
 

 

Robotics: Basics and Selected Advanced Concepts 

Prof. Ashitava Ghosal 

Department of Mechanical Engineering 

Indian Institute of Science, Bengaluru 

 

Lecture - 19 

Velocity and Static Analysis of Manipulators 

 

Welcome to this NPTEL course on Robotics, Basics and Advanced Concepts. In the next 

five lectures, we look at the velocity and static analysis of manipulators.  
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With the first lecture, we will introduce the topic of velocity analysis, then we will look at 

Linear and Angular Velocity of Links. In the second lecture, we look at this very important 

concept called Serial Manipulator Jacobian Matrix.  

In the third lecture, we look at Parallel Manipulator Jacobian Matrix. In the fourth lecture, 

we look at the Singularities in Serial and Parallel Manipulators. And in the last lecture with 

the sequence, we look at the Statics of Serial and Parallel Manipulators.  
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So, let us continue in introduction. So, basically till now we have looked at position 

kinematics. What is position kinematics? We have looked at position and orientation of 

links, the concept of workspace, the concept of mobility and so on. Now, we will look at 

the change of position and orientation with respect to time.  

So, this is also called velocity kinematics. So, basically we want to find the linear velocity 

as a derivative of position vector, and you also want to look at the angular velocity of a 

rigid body or a link in terms of derivative of a rotation matrix. So, the topics in velocity 

kinematics include linear and angular velocity of links in a robot, the manipulator 

Jacobians – there are a few of them, and singularities in velocity domain.  

In static equilibrium, we look at the relationship between external forces and moments, 

and the joint torques and forces. And we will look at singularities in the force domain.  
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So, in lecture 1, we are going to start with the linear and angular velocity of links. So, the 

linear velocity of a point 𝑂𝑖 which is the origin of a coordinate system fixed to the rigid 

body {𝑖} ok, can be defined as the derivative of the position vector. So, from a fixed 

reference coordinate system {0} ok, labeled as {0}. So, this is the position vector 𝑂𝑖
0 (𝑡). 

And as you can see I have drawn the X, Y and Z-axis at some instant of time 𝑡, and then 

the X, Y and Z-axis at drawn at an instant of time (𝑡 + Δ𝑡).  

So, what you can see is this axis at parallel ok. So, there is no change in the orientation of 

this rigid body. So, the rigid body at 𝑡 is this potato looking shape; and the rigid body at 

(𝑡 + Δ𝑡) is a translated version of the same potato looking shape ok. 

So, let us go back to the very basic definition of a derivative. So, the derivative is nothing, 

but ( lim
Δ𝑡→0

𝑂𝑖
0 (𝑡+Δ𝑡)− 𝑂𝑖

0 (𝑡)

Δ𝑡
). So, this is the most basic definition of the derivative of a 

vector. So, this is what we will call that is the velocity of the point 𝑂𝑖 in the rigid body {𝑖} 

ok.  

So, the ‘0’ denotes the coordinate system reference coordinate system {0}, where the limit 

is taken. Why we need to worry about this? Because this is a subtraction of two vectors, 

and we need to make sure that the vectors are in the same coordinate system when we 

subtract two vectors ok. And then we have to say that the velocity is with is with respect 

to that coordinate system; in this case the {0} coordinate system.  



 

 

The linear velocity can also be described in any other coordinate system you take any other 

vector, if we pre multiply this linear velocity vector with the rotation matrix [𝑅]0
𝑗

, so that 

we will denote it as ( 𝑽𝑂𝑖

0 )
𝑗

 with in the jth coordinate system. So, sometimes this 0 will 

be omitted, and we will just write 𝑽𝑂𝑖

𝑗
.  

So, basically what it means is the linear velocity is first computed in the {0} coordinate 

system, but it is described in an another coordinate system {j} ok. So, this two ideas that 

the derivative is taken in one coordinate system, but it can be written in another coordinate 

system its very useful ok. So, just to repeat, a two different coordinate systems involved 

one where the differentiation is done, and one where the vector is described.  
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The angular velocity of rigid body, however, cannot be described or obtained as a time 

derivative of 3 quantities ok. So, we had shown that a rotation matrix or the orientation of 

a rigid body can be described by 3 Euler angles ok. However, the angular velocity cannot 

be a straight forward derivative of those 3 Euler angles ok. Unlike the position vector, 

because the position vector as 𝑥, 𝑦 and 𝑧; and the velocity vector is nothing but 𝑑𝑥/𝑑𝑡, 

𝑑𝑦/𝑑𝑡, and 𝑑𝑧/𝑑𝑡.  

So, the angular velocity from the time derivative of rotation matrix requires a few steps. 

So, let us start. So, remember that [𝑅]𝑖
0 [𝑅]𝑖

0 𝑇 is identity ok. Or [𝑅]𝑖
0 [𝑅]𝑖

0 −1, inverse is same 

as transpose is identity matrix. So, let us differentiate this matrix equation with respect to 



 

 

time. So, we use chain rule. And we write [𝑅]𝑖
0 ̇ [𝑅]𝑖

0 𝑇 + [𝑅]𝑖
0 [𝑅]𝑖

0 𝑇̇ = [0]. The derivative 

of identity is 0 ok. 

So, what do you mean by derivative of a matrix? It is derivative of each and every term in 

the matrix it is implies the derivative of components of some matrix. So, this above 

equation can be written as ( [𝑅]𝑖
0 ̇ [𝑅]𝑖

0 𝑇 + ( [𝑅]𝑖
0 ̇ [𝑅]𝑖

0 𝑇)
𝑇

= [0]). So, this follows the rules 

of matrix multiplication and transpose. And this will be equal to [0].  
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So, now what you can see is that this matrix [𝑅]𝑖
0 ̇ [𝑅]𝑖

0 𝑇 is skew-symmetric. Why, because 

this plus its transpose is equal to [0] ok. So, we denote this skew-symmetric matrix by 

[Ω]𝑖
0

𝑅. The 0 here implies that it is with respect to the {0} coordinate system; i here implies 

that it was the matrix corresponding to the ith rigid body or the ith coordinate system; and 

R here comes from the fact that we started with the right multiplication.  

So, we took [𝑅]𝑖
0 [𝑅]𝑖

0 −1, [𝑅]𝑖
0 [𝑅]𝑖

0 𝑇 is identity ok. So, we started with the right 

multiplication. Later on we will see that we put a started with the left multiplication also.  
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So, the skew-symmetric matrix in detail can be written as this matrix. So, the diagonals 

are 0. And the (1,2) term is −𝜔𝑧
𝑠, (1,3) term is 𝜔𝑦

𝑠 , and the (2,3) term is −𝜔𝑥
𝑠. And why do 

we write it like this? Because the product of this matrix [Ω]𝑖
0

𝑅(𝑝𝑥, 𝑝𝑦, 𝑝𝑧)
𝑇
 is a cross 

product in 3D space ok. So, [Ω]𝑖
0

𝑅(𝑝𝑥, 𝑝𝑦, 𝑝𝑧)
𝑇
 can be written like this. And this is 

𝜔0
𝑖
𝑠 × 𝒑0 . 
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So, let us see what we are trying to say. So, 𝜔𝑥
𝑠, 𝜔𝑦

𝑠 , 𝜔𝑧
𝑠 are the components of the angular 

velocity vector extracted from the skew-symmetric matrix ok. The 𝑠 here stands for 

something called as a space fixed angular velocity vector which we will look at in more 

detail later ok. So, the components of 𝜔0
𝑖
𝑠 are the angular velocity components of 

coordinate system {i} with respect to {0} ok. 

So, as you can see in contrast to the linear velocity, angular velocity vector is not a straight 

forward differentiation of the orientation variables. We do not even have the orientation 

variables anywhere.  

We have started from a rotation matrix with 9 components. We have done [𝑅]𝑖
0 ̇ [𝑅]𝑖

0 𝑇, 

showed that [𝑅]𝑖
0 ̇ [𝑅]𝑖

0 𝑇 is a skew-symmetric matrix. And from the skew-symmetric matrix, 

we have recovered or extracted components 𝜔𝑥
𝑠, 𝜔𝑦

𝑠 , and 𝜔𝑧
𝑠.  
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So, let us take an example. So, suppose we want to find the angular velocity in terms of Z-

Y-Z Euler angles ok. Remember in a previous lecture, we had looked at this Z-Y-Z Euler 

angles. So, basically it consists of a rotation about the Z-axis by an angle 𝛼, about the Y-

axis by an angle 𝛽, and again rotation of 𝛾 about the Z-axis.  

So, the rotation matrix in product of three rotation matrixes about Z, Y, and Z, and 

eventually we will get this complicated rotation matrix ok. It consists of 𝑐𝛼𝑐𝛽𝑐𝛾 − 𝑠𝛼𝑠𝛾 

and so on. So, the R(3,3) term is cos 𝛽– angle 𝛽 ok. 



 

 

So, R(3,2) term is sin 𝛽 sin 𝛾 and so on ok. So, this we have done already it is just a 

recapitulation. We can find out [𝑅]𝐵
𝐴 ̇ [𝑅]𝐵

𝐴 𝑇 because [𝑅]𝐵
𝐴  is there we can take the derivative 

of each term post multiply by [𝑅]𝐵
𝐴 𝑇, this matrix simplify use the fact all the trigonometric 

identities that we know off.  

And eventually we can extract 𝜔𝑥
𝑠, 𝜔𝑦

𝑠 , 𝜔𝑧
𝑠 ok. And it turns out it is related to 𝛼̇, 𝛽̇, 𝛾̇ that 

is of course there because derivatives are there, but it also depends on cos 𝛼,  sin 𝛽, sin 𝛼 

and so on. 

So, for example,  

𝜔𝑥
𝑠 = 𝛾̇ cos 𝛼 sin 𝛽 − 𝛽̇ sin 𝛼 

𝜔𝑦
𝑠 = 𝛾̇ sin 𝛼 sin 𝛽 + 𝛽̇ cos 𝛼 

𝜔𝑧
𝑠 = 𝛾̇ cos 𝛽 + 𝛼̇ 

So, most important thing is that 𝜔𝑥
𝑠, 𝜔𝑦

𝑠 , 𝜔𝑧
𝑠 are not directly related to 𝛼̇, 𝛽̇ and 𝛾̇, but it 

also contains cosine and sin of the angles ok. 
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So, we have derived this [Ω]𝑖
0

𝑅 from the right multiplication. Right multiplication meaning 

we started with [𝑅]𝑖
0 [𝑅]𝑖

0 𝑇 is identity ok. From this, we derived an angular velocity vector 



 

 

as I said we have used a superscript 𝑠. So, this is called as the space fixed angular velocity 

vector ok.  

We see some geometrical interpretation of space fixed angular velocity vector little later. 

We could have also started with left multiplication which is [𝑅]𝑖
0 𝑇 [𝑅]𝑖

0  is identity ok. And 

then we could have derived a skew-symmetric matrix which is [𝑅]𝑖
0 𝑇 [𝑅]𝑖

0 ̇  ok. This, should 

be [0]. 

So, this is another skew-symmetric matrix which is [𝑅]𝑖
0 𝑇 [𝑅]𝑖

0 ̇  ok. And then you could 

have extracted an angular velocity vector 𝜔𝑥
𝑏, 𝜔𝑦

𝑠𝑏, 𝜔𝑧
𝑏, but now with the super script 𝑏 ok. 

So, this is the left multiplication ok. And it is basically started from [𝑅]𝑖
0 𝑇 [𝑅]𝑖

0 = [𝑈]. So, 

just ignore this equal to [𝑈]. So, this is a skew-symmetric matrix [𝑅]𝑖
0 𝑇 [𝑅]𝑖

0 ̇ . And it came 

from [𝑅]𝑖
0 𝑇 [𝑅]𝑖

0  which is identity again. 

So, the angular velocity vector 𝜔𝑥
𝑏, 𝜔𝑦

𝑏, 𝜔𝑧
𝑏 with the superscript 𝑏 of the rigid body 𝑖 with 

respect to the 0th coordinate system can be obtained from this [𝑅]𝑖
0 𝑇 [𝑅]𝑖

0 ̇  ok. 
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So, let us compute the x, y, z components of the angular velocity vector with starting from 

[𝑅]𝑖
0 𝑇 [𝑅]𝑖

0 ̇  ok. So,  

𝜔𝑥
𝑏 = −𝛼̇ cos 𝛾 sin 𝛽 + 𝛽̇ sin 𝛾 



 

 

𝜔𝑦
𝑏 = 𝛼̇ sin 𝛾 sin 𝛽 + 𝛽̇ cos 𝛾 

𝜔𝑧
𝑏 = 𝛼̇ cos 𝛽 + 𝛾̇ 

So, what you can see here is that the 𝜔𝑥
𝑏, 𝜔𝑦

𝑏 and 𝜔𝑧
𝑏 which we have derived from this  

[𝑅]𝑖
0 𝑇 [𝑅]𝑖

0 ̇  is very much different from when we did the other [𝑅]𝑖
0 ̇ [𝑅]𝑖

0 𝑇 ok. 

So, for example, the 𝜔𝑧
𝑏 component is (𝛾̇ cos 𝛽 + 𝛼̇), whereas in when we did this right 

multiplication, we have left multiplication [𝑅]𝑖
0 𝑇 [𝑅]𝑖

0 ̇ , then we get (𝛼̇ cos 𝛽 + 𝛾̇). So, this 

vector 𝜔0
𝑖
𝑏 of rigid body 𝑖 with respect to {0} coordinate system is all the body fixed 

angular velocity of 𝑖th rigid body with respect to the 0th rigid body. So, it has a super script 

𝑏.  

The two skew-symmetric matrix which is [Ω]𝑖
0

𝑅 and omega [Ω]𝑖
0

𝐿, they are related like 

any other tensor. So, [Ω]𝑖
0

𝑅 = [𝑅]𝑖
0 [Ω]𝑖

0
𝐿 [𝑅]𝑖

0 𝑇. And you can also show that the angular 

velocities are related as follows. That this fixed angular velocity vector is related to the 

body fixed angular velocity vector pre multiplied by a rotation matrix which describes the 

rigid body 𝑖 with respect to the 0th coordinate system. 
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So, now let us look at a little bit of a geometrical interpretation of this rigid body, and the 

two different concepts of angular velocity vector. So, what do we have? We have a rigid 

body at time 𝑡 and we have a rigid body at time (𝑡 + Δ𝑡). So, at time 𝑡, we have X, Y and 



 

 

Z. At time (𝑡 + Δ𝑡), the axis have changed ok. The origin is at the same place because we 

are only interested in the orientation of the rigid body. So, we will assume that the rigid 

bodies undergoing pure rotation.  

So, the points 𝑂𝑖(𝑡) and 𝑂𝑖(𝑡 + Δ𝑡) are coincidents and only the elements of the rotation 

matrix change with time ok. So, let us consider a point 𝑃 located in the 𝑖th coordinate 

system and fixed in {𝑖}. This is important. So, this point is rigid is fixed in the rigid body 

𝑖.  
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So, the location of 𝑃 in the 0th coordinate system can be written as 𝒑0  which is nothing 

but [𝑅]𝑖
0 𝒑𝑖 . So, just like any other vector, we transform from the ith coordinate system to 

the 0th coordinate system.  

So, since P is fixed in {i}, the derivative of this vector 𝒑̇0  which is nothing but the 

derivative 𝑽0
𝑝  in our notation is nothing but [𝑅]𝑖

0 ̇ 𝒑𝑖 . Because by chain rule, the term 

[𝑅]𝑖
0 𝑑( 𝒑𝑖 )

𝑑𝑡
= 0, then and since [𝑅]𝑖

0 −1 is same as [𝑅]𝑖
0 𝑇, we can write the velocity of the 

point as [𝑅]𝑖
0 ̇ [𝑅]𝑖

0 𝑇 𝒑0 . 

So, basically 𝒑𝑖  can be written as [𝑅]𝑖
0 𝑇 𝒑0 . So, think of it. This is inverse which is same 

as transpose, and we can convert 𝒑𝑖  into 𝒑0  matrix [𝑅]𝑖
0  pre-multiplied by that.  



 

 

Now, this [𝑅]𝑖
0 ̇ [𝑅]𝑖

0 𝑇 is nothing but this [Ω]𝑖
0

𝑅 ok. So, what do I have? So, velocity of this 

point P in the 0th coordinate system is given by [𝑅]𝑖
0 ̇ [𝑅]𝑖

0 𝑇 which is [Ω]𝑖
0

𝑅 𝒑0 . And this we 

know is same as the skew-symmetric matrix, so which is nothing but 𝜔0
𝑖
𝑠 × 𝒑0 .  

So, what have we derived that the velocity of the point in the 0th coordinate system is 

nothing but the space fixed angular velocity vector × 𝒑0  ok. So, remember the coordinate 

system {𝑖} does not appear except in denoting the rigid body 𝑖 that is being considered ok.  

There is no this side is 0, this is, 𝒑0  everywhere it is only 0. This 𝑖 is just to ensure that 

there is a rigid body 𝑖 we are talking about. So, the space fixed angular velocity vector is 

said to be independent of the choice of the body coordinate system. So, we do not really 

care what is the ith coordinate system.  
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Using the relationship that is [Ω]𝑖
0

𝑅 and [Ω]𝑖
0

𝐿 is given by this tensor transformation. We 

can also rewrite that 𝑽0
𝑝 the velocity of point P in the 0th coordinate system is 

[𝑅]𝑖
0 [Ω]𝑖

0
𝐿 [𝑅]𝑖

0 𝑇 𝒑0 . So, this we can simplify these two portions can be written as 𝒑𝑖 . So, 

we have [𝑅]𝑖
0 [Ω]𝑖

0
𝐿 𝒑𝑜  ok.  

Now, we can pre-multiply by this [𝑅]𝑖
0 −1 𝒑0 , so we will get [Ω]𝑖

0
𝐿 𝒑𝑖  ok. So, [𝑅]𝑖

0 [𝑅]𝑖
0 −1 

is identity. And then we can rewrite this as 𝑽𝑖
𝑝, because what are we doing we are 

converting this 0 vector into the velocity vector in the 0th coordinate system to the 𝑖th 



 

 

coordinate system. So, 𝑽0
𝑝 is described in the 𝑖th coordinate system which is nothing but 

𝑽𝑖
𝑝. And on the right hand side, you have [Ω]𝑖

0
𝐿 𝒑𝑖 , so which is nothing but the cross 

product of the body fixed angular velocity vector, 𝜔0
𝑖
𝑏 and 𝒑𝑖  ok. 

So, let us go over it once more. So, 𝑽0
𝑝 pre-multiplied by [𝑅]𝑖

0 −1 which is nothing but 

[𝑅]0
𝑖 . So, which is nothing but 𝑽0

𝑝 described in the 𝑖th coordinate system. Remember we 

had two ways of describing a linear velocity vector; one where the velocity was done, and 

one where it was described. So, this is described now in the 𝑖th coordinate system. So, this 

is 𝑽𝑖
𝑝, which is equal to 𝜔0

𝑖
𝑏 × 𝒑𝑖 , and where 𝜔0

𝑖
𝑏 is the body fixed angular velocity 

vector. 

So, again except for denoting the reference or the fixed coordinate system which is {0}, 

the coordinate system {0} does not appear anywhere in this equation. So, hence the body 

fixed angular velocity vector is said to be independent of the choice of the fixed coordinate 

system ok. Unless explicitly stated and in some problems we will be using the body fixed 

angular velocity vector. Most of the time the space-fixed angular velocity vector derived 

from [𝑅]𝑖
0 ̇ [𝑅]𝑖

0 𝑇 will be used in kinematic analysis ok. 
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Let us continue. How do we find the angular velocity in a serial manipulated with rotary 

joints? So, for two links connected by a rotary joint R joint, remember we had derived the 

constrained equation for a rotary joint. So, the 𝑖th rigid body with respect to 0 the rotation 



 

 

matrix is the rotation matrix with the, i minus 1𝑡ℎ previous one and multiplied by a rotation 

about the 𝑘-axis which is the rotary joint axis divide by 𝜃𝑖 ok. 

So, the time derivative of this [𝑅]𝑖
0 ̇ [𝑅]𝑖

0 𝑇 can be rewritten in this form. So, basically what 

we are doing is, we are going to do the time derivative of this side into transpose of this. 

And the transpose of this is (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇. We can rewrite the above equation this side 

is [Ω]𝑖
0

𝑅, this side is [Ω]𝑖−1
0

𝑅. 

And then we have this long term which is nothing but the rotation matrix of 𝑖 − 1 rigid 

body with respect to the 0th coordinate system, then multiplied by some [𝑅]̇  matrix, where 

𝑘̂ , 𝜃𝑖 is there, and then there is a, [𝑅]𝑇, and then there is a [𝑅]𝑖−1
0 𝑇.  

It follows from the above equation. And if we simplify and we write [𝑅(𝑘̂, 𝜃𝑖)]
𝑖−1

0
=

𝑒( [𝜅]𝑖
𝑖−1 𝜃𝑖), this is a well known formula ok. So, we can express e to the power a skew-

symmetric matrix times 𝜃𝑖 as the rotation matrix ok. 
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So, if you use this result and simplify and assumed that 𝑘̂ is fixed in (𝑖 − 1) and 𝑖, so 𝑑/𝑑𝑡 

that will be [𝜅]𝑖
𝑖−1 𝜃𝑖̇𝑒

( [𝜅]𝑖
𝑖−1 𝜃𝑖). So, derivative of 𝑒( [𝜅]𝑖

𝑖−1 𝜃𝑖) is [𝜅]𝑖
𝑖−1 𝜃𝑖̇𝑒

( [𝜅]𝑖
𝑖−1 𝜃𝑖) just like 

derivative of 𝑒𝑥.  



 

 

So, from the above and properties of the rotation matrix, we can show that the [Ω]𝑖
0

𝑅 is 

nothing but [Ω]𝑖−1
0

𝑅 + [𝑅]𝑖−1
0 [𝜅]𝑖

𝑖−1 [𝑅]𝑖−1
0 𝑇𝜃̇𝑖 which is nothing but [Ω]𝑖−1

0
𝑅 + [𝜅]𝑖

0 𝜃𝑖̇. 

So, here [𝜅] is the skew-symmetric matrix ok. And in terms of vectors space fixed angular 

velocity vectors, we can write the 𝜔0
𝑖 = 𝜔0

𝑖−1 + 𝑘̂0
𝑖𝜃𝑖̇. So, I have intentionally done 

this, but it is obvious that if there are two rigid bodies connected by a rotary joint which is 

along the Z-axis or the 𝑘̂ axis, so the angular velocity at the 𝑖th rigid body will be equal to 

the angular velocity of the (𝑖 − 1)th rigid body times 𝜃𝑖̇ along the 𝑘̂-axis ok. 

The whole idea was that although this is an obvious result, we know that and you can 

intuitively see what is happening when two rigid bodies are connected by rotary joint ok. 

We can prove it mathematically. We are not going to do this all the time, but just to show 

that it can be done ok. We can also pre-multiply the above equation by [𝑅]0
𝑖  ok. So, [𝑅]0

𝑖  

basically means that you want to express this vector 𝜔0
𝑖  in the 𝑖th coordinate system ok. 

So, pre-multiply by [𝑅]0
𝑖  will give you 𝜔𝑖

𝑖  ok. Remember 𝜔𝑖
𝑖  is not 0. What is the 

meaning of 𝜔𝑖
𝑖 ? It is the angular velocity of the rigid body 𝑖 derived in the 0th coordinate 

system, but expressed in the 𝑖th coordinate system ok. So, 𝜔𝑖
𝑖  will be [𝑅]𝑖−1

𝑖 𝜔𝑖−1
𝑖−1 +

𝜃𝑖̇(0,0,1)𝑇, because the 𝑘̂ axis in its own coordinate system will be (0,0,1)𝑇 ok. So, 𝜔𝑖
𝑖  

denotes [𝑅]𝑖
0 𝜔0

𝑖  which is not necessarily 0 that is important.  

So, equation (13) gives the angular velocity propagation in links of a serial manipulated 

connected by R joints ok. But what is the meaning of this? That suppose I start from some 

𝑖 = 1 ok. So, I know 𝜔1
1  pre-multiplied by a rotation matrix [𝑅]0

1 . And then if you add to 

it, the 𝜃̇ which is happening at the first joint, we will get the angular velocity of the first 

link ok.  

So, 𝑖 =1, 𝜔0
0  ok, which is basically fixed the base is not moving if you add to it the 𝜃̇ 

when you get the angular velocity of the first link. How about the angular velocity of the 

second link? You put 𝑖 = 2, then add to it 𝜃̇2, and you will get 𝜔2
2  ok. So, we can go 

from 𝑖 = 1, 2, 3, all the way to the last link ok. 
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Now, let us look at the linear velocity propagation in a serial manipulator. And again we 

will consider R joint. So, if there are two consecutive links in a serial manipulator, the 

origin of the 𝑖th link can be written as the origin of the (𝑖 − 1)th link thus the origin of the 

𝑖th link with respect to the, (𝑖 − 1)th coordinate system pre multiplied by a rotation matrix 

ok.  

So, we can take the derivative of a position vector that is straightforward which is not like 

the angular velocity and rotation matrix business. So, the derivative with respect to time 

on both sides if you take, we will get the linear velocity of the origin of the 𝑖th link will be 

same as the linear velocity of the origin of the (𝑖 − 1)th link plus 𝜔0
𝑖−1 × [𝑅]𝑖−1

0 𝑂𝑖−1
𝑖. 

This formula is very well known except we have written it in a more formal way. 

So, except this R is the vector from  (𝑖 − 1) to 𝑖 ok. So, we need to convert it back to the 

0th coordinate system before we can do cross product. So, we can simplify and rewrite by 

pre multiplying by [𝑅]0
𝑖 . So, 𝑽𝑖

𝑖  can be written as [𝑅]𝑖
𝑖−1 ( 𝑽𝑖−1

1−1 + 𝜔𝑖−1
𝑖−1 × 𝑂𝑖−1

𝑖). 

So, again note that, this is not 0. So, 𝑽𝑖
𝑖 is nothing but the linear velocity of the 𝑖th link 

obtained in the 0th coordinate system, but pre multiplied by a rotation matrix ok. 

So, this equation gives the propagation of linear velocity vector from one link to the next 

link. So, if I know the linear velocity of the, (𝑖 − 1)th link, from this, I can find the linear 



 

 

velocity of the 𝑖th link ok. This we have considered when there are connected by rotary 

joints.  
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We can also find the velocity propagation when the two links are connected by prismatic 

joints. So, the prismatic joint allows translation between (𝑖 − 1) and 𝑖 ok, the angular 

velocities are same, so there are two links and there is a prismatic joint in between the 

angular velocity if the 𝑖th link and the (𝑖 − 1)th link same. That is however, the relative 

translation from the Z-axis given by 𝑑𝑖
̇ (0,0,1)𝑇. 

So, the velocity propagation for a prismatic joint from one link to the next, the angular 

velocities are same ok. It is just written, so that we write it as [𝑅]𝑖−1
𝑖 𝜔𝑖−1

𝑖−1, but basically 

the angular velocities are same in both in with respect to the fixed coordinate system. And 

the linear velocity is nothing but that the linear velocity 𝑉 plus some 𝜔 plus some 𝑑𝑖
̇ . And 

again we have pre multiplied by rotation matrix to write in this nice compact manner ok.  

So, what is [𝑅]𝑖−1
𝑖 𝜔𝑖−1

1 ? This is 𝜔𝑖
𝑖 . Again it is not necessarily equal to 0. Similarly, 

𝑽𝑖
𝑖, again it is not necessarily equal to 0.  
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Let us look at an example, velocity propagation in planar 3R manipulator. So, again we 

have this well known planar 3R manipulator that are three rotary joints – 1, 2, and 3, there 

are three links with 𝑙1, 𝑙2 and then 𝑙3 which is the link lengths of the tool or the end effector 

coordinate system ok. So, all joints are parallel and coming out. So, angles are 𝜃1, 𝜃2, and 

𝜃3.  

So, hence {0} is a fixed coordinate system, 𝜔0
0 = 0, and 𝑽0

0 = 𝟎. Links are connected 

by rotary joints ok. So, hence we have to use equation (13) and (14) ok. What is (13) and 

(14)? These two equations. (14) is this – how the linear velocity propagates; and (13) is 

this – how the angular velocity propagate.  

So, rotary joint means previous angular velocity plus 𝜃̇𝑖 will give you the next angular 

velocity, of course, added properly. And linear velocity, previous linear velocity plus 

𝜔 × [𝑅]𝑂  will give you the next two linear velocity. So, we are going to use these two 

ideas or these two formulas ok. 
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So, for 𝑖 = 1, 𝜔0
0  was 0. So, 𝜔1

1 = (0,0, 𝜃̇1)
𝑇
 first term is 0 and 𝑽1

1 = 0. Because, 

why, we can see the formula for 𝑖 = 2, 𝜔2
2 = (0,0, 𝜃̇1 + 𝜃̇2)

𝑇
; and 𝜃2̇ will be some  

(
cos 𝜃2 sin 𝜃2 0

− sin 𝜃2 cos 𝜃2 0
0 0 1

) (
0

𝑙1𝜃1̇

0

) 

So, hence you will get (𝑙1𝑠2𝜃1̇, 𝑙1𝑐2𝜃1̇, 0)
𝑇
. And for 𝑖 = 3, the angular velocity will be 

sum of the 𝜃1̇, 𝜃2̇, 𝜃3̇; and 𝑽3
3 = ((𝑙1𝑠23 + 𝑙2𝑠3)𝜃̇1 + 𝑙2𝑠3𝜃̇2, (𝑙1𝑐23 + 𝑙2𝑐3)𝜃̇1 +

𝑙2𝑐3𝜃̇2, 0  )
𝑇

. 

This is the planar example. So, as I have set several times now the 𝑽2
2 is not 0 ok; 𝑽1

1 

turns out to be 0, but 𝑽2
2 is not 0, 𝑽3

3 is not 0 ok. 
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And finally, the angular velocity of the tool described in the {Tool} coordinate system is 

(0,0, 𝜃̇1 + 𝜃̇2 + 𝜃̇3)
𝑇
. The velocity of the tool the end effector described in the end effector 

coordinate system – tool coordinate system is given by (𝑙1𝑠23 + 𝑙2𝑠3)𝜃̇1 and so on. Again 

the z component is 0. 

Now, we can rewrite these angular velocity of the tool and the linear velocity of the tool 

in the 0th coordinate system. How, which has pre multiplied by a rotation matrix [𝑅]𝑇𝑜𝑜𝑙
0  

and [𝑅]𝑇𝑜𝑜𝑙
0  here also. So, if you pre multiply, you will get the angular velocity vector is 

nothing but theta (0,0, 𝜃̇1 + 𝜃̇2 + 𝜃̇3)
𝑇
.  

The linear velocity is (−𝑙1𝑠1𝜃̇1 − 𝑙2𝑠12(𝜃̇1 + 𝜃̇2) − 𝑙3𝑠123(𝜃̇1 + 𝜃̇2 + 𝜃̇3)) and so on, and 

the y component will contain cos 𝜃1, cos(𝜃1 + 𝜃2) and cos(𝜃1 + 𝜃2 + 𝜃3). 
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So, does it make sense? Yes. Why? Because if you remember that x-component of the 

position vector ok, let us go back and see. So, the x-component here will be 

(𝑙1 cos 𝜃1 + 𝑙2 cos(𝜃1 + 𝜃2) + 𝑙3 cos(𝜃1 + 𝜃2 + 𝜃3)).  

So, if you take the derivative of the x-component, you will get 

(−𝑙1 sin 𝜃1 𝜃̇1), (−𝑙2 sin(𝜃1 + 𝜃2) (𝜃̇1 + 𝜃̇2)) and so on ok. So, the position vector we 

know we can and we can easily take the derivatives, and we can see that this is what you 

will get ok. So, this is an example where we can very easily go back to what we know 

from our previous vector algebra and derivatives of a vector, and find out the linear 

velocity of the Tool. 

How about the angular velocity? Is that obvious? Yes. So, the first joint is rotating by 𝜃1; 

second joint is rotating by relative rotation is 𝜃2; third joint relative rotation is 𝜃3. So, the 

total rotation of the first three joints the end effector orientation is (𝜃1 + 𝜃2 + 𝜃3), and the 

angular velocity will be (𝜃̇1 + 𝜃̇1 + 𝜃̇3). Remember this is because this is the planar 

mechanism, all the joint axis are coming out.  

So, in summary the linear velocity of a point on the rigid body is nothing but the time 

derivative of the position vector. The angular velocity of a rigid body in terms of the 

derivative of a rotation matrix, there are two of them. One is this [𝑅]𝑖
0 ̇ [𝑅]𝑖

0 𝑇 which is called 

[Ω]𝑖
0

𝑅 ok. So, it is obtained from the time derivative of [𝑅]𝑖
0 [𝑅]𝑖

0 𝑇 equal to identity.  



 

 

So, this [𝑅]𝑖
0 ̇ [𝑅]𝑖

0 𝑇 gives rise to space fixed angular velocity vector 𝜔0
𝑖
𝑠 with superscript 

𝑠. We can also have [𝑅]𝑖
0 𝑇 [𝑅]𝑖

0 ̇  which is the left multiplication ok. And we can do 

[𝑅]𝑖
0 𝑇 [𝑅]𝑖

0  is identity. And this [Ω]𝑖
0

𝐿 gives rise to what is called as the body fixed angular 

velocity vector ok. 

So, this is why there is a superscript 𝑏 ok. We use space fixed angular velocity vector most 

of the time ok. They are related. Actually angular velocity vector which is space fixed 𝜔0
𝑖
𝑠 

it can be related to 𝜔0
𝑖
𝑏 by rotation matrixes. Likewise, the skew-symmetric matrix [Ω]𝑖

0
𝑅, 

and the skew-symmetric matrix [Ω]𝑖
0

𝐿 are related like a tensor transformation. So, it is 

[𝑅]𝑖
0 [Ω]𝑖

0
𝐿 [𝑅]𝑖

0 𝑇.  

Then I showed you how to obtain the propagation of linear and angular velocities between 

links connected either by a rotary joint or a prismatic joint ok. We can easily obtain the 

linear and angular velocity of any serial manipulator link connected with rotary and 

prismatic joints ok.  

So, if you want the angular velocity of the third link, we can go from 0, 1, 2, and then 3 

ok. So, any link with respect to any other link can be obtained by simply using these 

propagation equations. With this, we will come to a stop in this lecture. In the next lecture, 

we look at serial manipulated Jacobian matrix.  


