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Welcome to this NPTEL lectures on Robotics: Basics and Advanced Concepts. In the last 

3 lectures, we had looked at the kinematics of serial robots. We had looked at the direct 

kinematics problem and the inverse kinematics problem. In the inverse kinematics 

problem, we showed that you need to derive a single equation in one of the joint variables, 

which we can then solve to obtain the joint variable given the position and orientation of 

the last link or the end effector. 

So, in this lecture, we will look at this concept of Elimination Theory and Solution of Non-

linear Equations. So, this will help us understand how we can derive in general a single 

equation in one of the joint variables. So, quick review of inverse kinematics of serial 

robots. 
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The inverse kinematic involves solution of a set of non-linear transcendental equation. We 

desire a closed-form or analytical solution over a purely iterative or numerical approach. 

And the reason is this closed-form solutions provide criteria for the workspace of the robot 



and how many configurations are possible to reach a given position and orientation, all the 

multiple configurations, which are possible solutions of the inverse kinematics problem. 

So, the general approach for inverse kinematics of serial robots is first, convert the 

transcendental equations to polynomial equations using tangent half angle substitution ok. 

So, the kinematics involves sine and cosine 𝜃’s and we can convert that into tan(𝜃/2) 

which is denoted by 𝑥 and then we get the equation in terms of polynomial in 𝑥. 

Then, we need to eliminate sequentially or if possible, in one step, joint variables to arrive 

at a single polynomial in one joint variable. And then, we solve if possible, in closed-form 

for example, up to quartic equations, we can solve in closed-form for the unknown joint 

variable and then, obtain all other joint variables by back substitution ok. So, the key step 

is to obtain the univariate polynomial by elimination, and this is what we will see in this 

lecture. 
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So, let us start what is elimination theory? So, the first important concept is if you are 

given two polynomial equations, let us say 𝑓(𝑥, 𝑦) = 0, and 𝑔(𝑥, 𝑦) = 0 of degree 𝑚 and 

𝑛 ok. So, the important concept is what is the degree of a polynomial?  

So, the degree of a polynomial is the sum of the exponents of the highest degree term. So, 

for example, if 𝑓(𝑥, 𝑦) = 𝑥𝑦2 + 𝑥2𝑦 + 𝑥2 + 𝑦2 + 1 = 0, the degree of this polynomial is 

3 because the sum of the exponents of 𝑥 and 𝑦 in the first and second term is 3 ok. 



What do we know? If you are trying to eliminate an equation between two such 

polynomials, there is a very well-known theorem called Bezout’s theorem ok. So, if I have 

two polynomials, 𝑓(𝑥, 𝑦) = 0, and 𝑔(𝑥, 𝑦) = 0 of degree 𝑚 and 𝑛, there is a maximum of 

𝑚 × 𝑛 (𝑥, 𝑦) values which satisfy both these equations ok. Important word is maximum 

of 𝑚 × 𝑛. 

This is an upper bound. It includes all the real possible values of (𝑥, 𝑦), complex conjugate 

values of (𝑥, 𝑦) and also solutions at infinity. So, you know there is this whole idea that 

there are some solutions which are at infinity. 

So, for example, example 1: if I have an equation which is (𝑥2 + 𝑦2 = 1) so, this is 

nothing but a equation of a circle origin (0, 0) and radius 1 and we have another equation 

which is (𝑦 − 𝑥 = 0). So, this is a line passing through the origin at an angle 45 degrees. 

So, we can see that these two equations, (𝑥2 + 𝑦2 = 1) and (𝑦 − 𝑥 = 0) are satisfied by 

two sets of values of 𝑥 and 𝑦. So, these are nothing but ± (
1

√2
,

1

√2
). 

Example 2: if you have the same circle, but the line is now (𝑦 − 𝑥 = 2). So, now, you can 

see that these two equations do not have any real (𝑥, 𝑦) which satisfies these two equations 

ok, there are no real values of 𝑥 and 𝑦 possible. Finally, again we look at this circle and 

the line is now (𝑦 − 𝑥 = √2). So, then, you can draw and check that it is satisfied by two 

coincident real values of (𝑥, 𝑦) basically, this line is tangent to this circle and both the 

solutions are at one place.  
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Example 1, 2 and 3 can also be interpreted geometrically. So, the line (𝑦 − 𝑥 = 0) 

intersects the circle at two points quite obvious, line (𝑦 − 𝑥 = 2) does not intersect the 

circle at real points. And (𝑦 − 𝑥 = √2) is tangent to the circle (𝑥2 + 𝑦2 = 1) ok. 

You can also verify; that if you take two parabolas, or two ellipses, or two hyperbolas ok, 

these are called quadratic curves ok. So, we have power of 𝑥 and 𝑦 as two. So, they can 

intersect at 4 points. One apparent contradiction is if you have two circles so, we can sketch 

two circles on a sheet of paper and then, you can see that it will never intersect at 4 points, 

the circles are quadratic, but they never intersect at 4 points. 

So, this contradiction can be resolved if homogeneous coordinates 𝑥, 𝑦, 𝑤 is used to 

represent the equation of the circle. Remember, we had this homogeneous transformation 

matrix where we added a (1 = 1) in terms of a generalization of that, we could have added 

an equation (𝑤 = 𝑤) so, that is what makes 𝑥, 𝑦 which are normal coordinates and if you 

add another coordinate 𝑤, so that is what is called homogeneous coordinates ok. 

So, in terms of homogeneous coordinates, you can show that there are two complex 

conjugate solutions for two circles at infinity for any two circles ok. So, whatever is the 

radius of the circle, if you draw two circles, they intersect at two points, you can show and 

two other points are at infinity.  
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So, Bezout’s theorem can be extended to two 𝑚- and 𝑛- order manifolds. It can be shown 

that, or it has been shown that they intersect in at most a 𝑚 × 𝑛 order sub-manifold ok. 

So, example 1: A sphere which is (𝑥2 + 𝑦2 + 𝑧2 = 1), here (𝑚 = 2) and intersects a 

plane (𝑥 = 0), which is (𝑛 = 1) in a circle this is obvious. If you take a sphere and you 

cut it by a plane through its origin, you will get a circle which is (𝑦2 + 𝑧2 = 1) and this is 

a second-order curve ok. So, the sub-manifold is 1 × 2 which is second-order. 

You can also have two cylinders which is 𝑚 = 𝑛 = 2 and we know from CAD or we know 

from our basic geometry that it intersects in a fourth-degree curve ok, two cylinders 

intersect at a fourth-degree curve. Bezout’s theorem is of no use in obtaining the solution, 

it is not a constructive theorem. All it is telling you that there are 𝑚 × 𝑛 possible (𝑥, 𝑦) or 

𝑚 × 𝑛 sub-manifolds ok, but it does not tell you what are these (𝑥, 𝑦) points ok. 

So, one constructive method is given by Sylvester’s ok, it is available in this book by 

Salmon in 1964, but this was developed in the 1800’s. It is called the Sylvester’s dialytic 

elimination method and I want to show this in a little detail.  
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Through one example first. So, consider two polynomials, in 𝑥 and 𝑦 so, 𝑓1(𝑥, 𝑦) =

𝑎2(𝑦)𝑥2 + 𝑎1(𝑦)𝑥 + 𝑎0(𝑦) = 0. So, it is quadratic in 𝑥2, but the coefficients could be any 

functions of 𝑦 ok, arbitrary functions of 𝑦. So, we have these two polynomials and 𝑎𝑖, 𝑏𝑖 

are arbitrary polynomials in 𝑦 or constant ok. 

So, what does the Sylvester’s method tell you? It tells you that we generate additional 

equations by multiplying both these two equations by 𝑥 ok. So, if I multiply 𝑥 × 𝑓1, we 

will get 𝑎2(𝑦)𝑥3 + 𝑎1(𝑦)𝑥2 + 𝑎0(𝑦)𝑥 + 0 = 0. Similarly, if I multiply the second 

equation by 𝑥, I will get 𝑏2(𝑦)𝑥3 + 𝑏1(𝑦)𝑥2 + 𝑏0(𝑦)𝑥 + 0 = 0 ok. So, I have generated 

4 equations ok. 

The second step in Sylvester’s method is very important. It tells you that we consider 

𝑥3, 𝑥2, 𝑥1 and the constant which is 𝑥0 as “linearly” independent variables ok. So, the word 

linearly is important, they are clearly not independent because so, second 𝑥2 is clearly 

square of 𝑥1. 

So, once you consider these as linearly independent variables, these four equations can be 

written as a matrix equation which is [𝑆𝑀](𝑦)(𝑥3, 𝑥2, 𝑥, 𝑥0)𝑇 = 0 and I will show you 

what is [𝑆𝑀] next ok. So, it is basically what you will see is that we will have 𝑎2, 𝑎1, 𝑎0, 0 

in the first row, 0, 𝑎2, 𝑎1, 𝑎0 in the second row and so on ok.  
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So, the set of 4 linearly independent equations are (𝑎2, 𝑎1, 𝑎0, 0) × some column vector, 

(0, 𝑎2, 𝑎1, 𝑎0) × some column vector and so on ok, (𝑏2, 𝑏1, 𝑏0, 0) × same column vector 

and (0, 𝑏2, 𝑏1, 𝑏0) × in the same column vector. So, this equation which is of the form 

𝐴𝑋 = 0, it is a set of linear equations of 𝐴𝑋 = 0  ok. 

So, this set of equations have a non-trivial solution when det[𝑆𝑀] = 0, this is from linear 

algebra. So, basically, we have determinant of that matrix equal to 0 ok. So, how did I get 

this matrix ok? There is a trick. What you can see is that the second equation is nothing 

but the original 𝑓1 equation. So, 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0𝑥0 = 0. 

When you multiply this equation by 𝑥, you basically shift this row to the left. So, similarly, 

the first equation was 𝑓2(𝑥, 𝑦) = 𝑏2𝑥2 + 𝑏1𝑥 + 𝑏0𝑥0 = 0  and we multiplied by 𝑥 and we 

shifted to the left. So, what we have by multiplication is four equations in four unknowns 

so, we have basically a square system of equations and hence from linear algebra, we say 

that the determinant of that matrix must be equal to 0. 

In this case, we can find the determinant, it is quite simple, we just use the rules of 

determinant, it reduces to this expression which is ((𝑎2𝑏1 − 𝑏2𝑎1)(𝑎1𝑏0 − 𝑏1𝑎0) −

(𝑎2𝑏0 − 𝑏2𝑎0)2 = 0) ok. So, remember, all the 𝑎’s are constant or functions of 𝑦 ok. 

So, hence det([𝑆𝑀]) = 0 is only a function of 𝑦. So, what have we done? We have 

managed to get rid of 𝑥 ok. We have obtained a single equation only in 𝑦 ok. It is important 

to note that this equations ([𝑆𝑀](𝑥3, 𝑥2, 𝑥, 𝑥0)𝑇 = 0) they are not strictly independent ok, 



they are linearly independent because we are considering these 𝑥3, 𝑥2, 𝑥1 and 𝑥0 as 

linearly independent variables, but they are actually non-linearly dependent. 

(Refer Slide Time: 14:41) 

 

The variable 𝑥 can be obtained from the set of linear equations ok. So, we have 

[𝑆𝑀](𝑥3, 𝑥2, 𝑥1, 𝑥0)𝑇 = 0. We can do row reduction ok. So, basically, multiply the first 

equation by something, subtract from the second and so on ok, standard approaches in 

linear algebra to solve a set of equations.  

And what we will get is that the third row will become 𝑥1 × something will be equal to 0 

and we can simplify that and see that  

𝑥1 = −
𝑎1𝑏0 − 𝑏1𝑎0

𝑎2𝑏0 − 𝑏2𝑎0
=

𝑎2𝑏0 − 𝑏2𝑎0

𝑎1𝑏2 − 𝑎2𝑏1
 

So, the 𝑥 computed using the two expressions here, right-hand side must be same and can 

be used as a programming, numerical consistency check. So, one thing what you can see 

is this (𝑎1𝑏0 − 𝑏1𝑎0), this left term here should be equal to this, which is nothing but if 

you expand it out, you will get det[𝑆𝑀](y) = 0.  

So, we are not getting any new information or inconsistent information. So, we get an 𝑥 in 

two ways, both must be same, and we also show that these two terms must be related by 

det[𝑆𝑀](y) = 0 ok. So, what have we done? We have got a single equation in 𝑦 and we 

also have solved for 𝑥. 
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So, in general, if I am given an 𝑚th degree polynomial 𝑃(𝑥) = ∑ 𝑎𝑖𝑥
𝑖 = 0𝑚

𝑖=0  and an 𝑛th 

degree polynomial 𝑄(𝑥) = ∑ 𝑏𝑖𝑥
𝑖 = 0𝑛

𝑖=0  where, 𝑎 and 𝑏 are co-efficients could be 

functions of 𝑦 or constants. 

We construct the Sylvester’s matrix of 𝑃(𝑥) and 𝑄(𝑥) by basically starting with this 

original equation, multiplied by 𝑥 first, then multiply by 𝑥2 and so on till you get some 

terms top half like this. And similarly, you take the equation 𝑄(𝑥) = ∑ 𝑏𝑖𝑥
𝑖 = 0𝑛

𝑖=0 , then 

you again multiply by 𝑥 as many times as possible to eventually get a square matrix ok.  

So, we have to multiply by correct number of times, the first equation 𝑃(𝑥), such that we 

get a Sylvester’s matrix which is (𝑚 + 𝑛) × (𝑚 + 𝑛), it is a square matrix. So, all the 

unfilled elements in this matrices are 0, ok. 

So, as I have said, we are multiplying by 𝑥 so, the ith row of the top half are the co-efficients 

of 𝑃(𝑥) × 𝑥𝑖 = 0,   𝑖 = 𝑛 − 1, 𝑛 − 2, … ,1,0 and the ith row of the bottom half are the co-

efficients of 𝑄(𝑥) × 𝑥𝑖 = 0,   𝑖 = 𝑚 − 1, 𝑚 − 2, … ,1,. So, this matrix is of dimension 

(𝑚 + 𝑛) × (𝑚 + 𝑛). 
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And Sylvester’s criteria is that the polynomials 𝑃(𝑥) = 0 and 𝑄(𝑥) = 0 have a non-trivial 

common factor meaning as a non-trivial solution 𝑥 if and only if det([𝑆𝑀]) = 0. 

So, what is the analogy? This is basically an analogy from linear equations ok. So, 

Sylvester’s followed this idea of what happens when we have a linear equation and then, 

he extended it to non-linear equation except that the column vector, the unknowns are not 

really independent, they are 𝑥3, 𝑥2, 𝑥1, 𝑥0 and so on, ok. 

So, all powers of 𝑥, 𝑥𝑚+𝑛−1 and so on, including the constant term are treated as linearly 

independent variables ok. And this matrix is always of dimension (𝑚 + 𝑛) × (𝑚 + 𝑛). 

So, in general, whenever det([𝑆𝑀]) = 0, we will get a non-trivial solution of, this vector 

𝑥𝑚+𝑛−1, 𝑥𝑚+𝑛−2, all the way to 𝑥0, ok.  
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So, what is the algorithm? We can write it in steps: so, given two polynomials, 𝑓(𝑥, 𝑦) =

0, and 𝑔(𝑥, 𝑦) = 0. Rewrite these two polynomials as ∑𝑎𝑖𝑥
𝑖. So, basically, I should take 

all the 𝑦 parts in the coefficients and the other polynomial variables. So, 𝑄(𝑥) has 

∑𝑏𝑖(𝑦)𝑥𝑖 = 0, ok. So, note: all the coefficients of this polynomials are functions of 𝑦 or 

constant. 

Then, obtain [𝑆𝑀](𝑦) exactly in the form as I showed you, you multiply 𝑃(𝑥) correct 

number of times with 𝑥, 𝑄(𝑥) correct number of times with 𝑥 and then, form the square 

matrix and then, you compute det[𝑆𝑀](y) = 0. So, this is a polynomial in 𝑦 alone ok. So, 

in this two steps, we have eliminated 𝑥, that is why it is called theory of elimination. 

So, we solve det[𝑆𝑀](y) = 0 if possible, analytically or numerically ok. So, as I have 

discussed last lecture, that if it is up to quartic, then we can solve analytically otherwise, 

you have to do numerically. And once we have 𝑦, possible solutions for this 𝑦, then this 

equation (39) can be solved, using standard linear algebra techniques basically, row 

reduction for the linearly independent unknowns 𝑥𝑚+𝑛−1 all the way to 𝑥0, ok. 

And the integrity of the numerical procedure can be verified by checking that 𝑥1 and say 

𝑥2 are related in this form, (𝑥1)2 is nothing but 𝑥2. 
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So, as we can see this Sylvester’s matrix [𝑆𝑀] is (𝑚 + 𝑛) × (𝑚 + 𝑛) and det[𝑆𝑀](y) =

0 can become computationally quite expensive. So, for example, if 𝑚 = 5 and 𝑛 = 6 so, 

this is 11 × 11 matrix and determinant of an 11 × 11 matrix is pretty bad ok. 

So, Bezout, same person as Bezout’s theorem in 18th century proposed a method where 

the determinant of the order max(𝑚, 𝑛) needs to be computed. We do not need to compute 

(𝑚 + 𝑛) × (𝑚 + 𝑛) matrix; we need to compute a matrix, which is max(𝑚, 𝑛). So, in that 

example of 𝑚 = 5 and 𝑛 = 6, we will need to generate a matrix which is 6 × 6 and 

compute the determinant of that, ok. 

So, what is the key idea in Bezout’s matrix? The key idea is to divide instead of multiplying 

to get required number of independent equations and a square matrix, ok. So, previously, 

we were multiplying by 𝑥 now, we have to do suitable divisions, ok.  
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So, example: so, consider again two polynomials in 𝑥 and 𝑦, same two polynomials 

𝑎2(𝑦)𝑥2 + 𝑎1(𝑦)𝑥 + 𝑎0(𝑦) = 0 and 𝑏2(𝑦)𝑥2 + 𝑏1(𝑦)𝑥 + 𝑏0(𝑦) = 0. So, we write 

𝑎2(𝑦)𝑥2 = −𝑎1(𝑦)𝑥 − 𝑎0(𝑦). So, basically, we take these two terms on the other side and 

similarly, 𝑏2, you take these two terms on the other side. 

And if 𝑥 ≠ 0, we can divide those two equations and we can get  

𝑎2

𝑏2
=

𝑎1𝑥 + 𝑎0

𝑏1𝑥 + 𝑏0
 

We can also take (𝑎2𝑥 + 𝑎1) and so, basically take 𝑥 common outside is equal to −𝑎0, 

and similarly, (𝑏2𝑥 + 𝑏1) with 𝑥 common is equal to −𝑏0, and again divide both of them 

and we can get another equation in 𝑥, ok. So, basically, what have we done? By dividing 

suitably, we have now obtained two equations in 𝑥 alone; we have managed to get rid of 

𝑥2. 

And then, we can expand these two equations and write in a matrix form so, you can see 

it will be ((𝑎2𝑏1 − 𝑎1𝑏2)𝑥1 + (𝑎2𝑏0 − 𝑎0𝑏2)𝑥0 = 0), so that will be the first equation 

similarly, the second equation will be ((𝑎2𝑏0 − 𝑎0𝑏2)𝑥1 + (𝑎1𝑏0 − 𝑎0𝑏1)𝑥0 = 0).  
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So, for non-trivial, 𝑥1 and 𝑥0 treated as independent variables. The determinant of this 

matrix must be equal to 0. So, this is the Bezout’s matrix. So, we started with two 

polynomials, second order polynomials, quadratic polynomials and the Bezout’s matrix is 

2 × 2 ok. 
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So, can we solve for 𝑥? Yes, we can go back and look at any one of these equations and 

solve for what is 𝑥 ok. So, we can show that 

𝑥1 = −
𝑎1𝑏0 − 𝑏1𝑎0

𝑎2𝑏0 − 𝑏2𝑎0
=

𝑎2𝑏0 − 𝑏2𝑎0

𝑎1𝑏2 − 𝑎2𝑏1
 



 

So, the expressions for 𝑥 are same as from the Sylvester’s method, but the Bezout matrix 

is now 2 × 2 ok. 

So, what about the determinant of the Bezout’s matrix and the determinant of Sylvester’s 

matrix? Both are exactly same, ok. So, they will both give the same expression. So, this is 

an expression only in 𝑦. So, we have eliminated 𝑥 and what we get is some det[𝑆𝑀](y) =

0 or det[𝐵𝑀](y) = 0, ok. 

So, although, the dimension of Bezout’s matrix is less, it is 2 × 2, but each term in the 

matrix is more complex ok. So, remember in the Sylvester’s matrix, we had the 𝑎2 𝑎1 𝑎0 

and then, we shifted left ok. So, we had a 4 × 4 matrix with 𝑎’s and 𝑏’s. Here, you have a 

2 × 2 matrix, but each term is complicated, it is (𝑎2𝑏1 − 𝑎1𝑏2) and so on ok. So, it is not 

as if we are shifting the equation by left, we have to actually compute the terms. So, it is 

possible to do, but nevertheless it is more complex. 
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So, in general, if you are given polynomial 𝑃(𝑥) = ∑ 𝑎𝑖𝑥
𝑖 = 0𝑚

𝑖=0 , mth degree polynomial, 

and 𝑄(𝑥) = ∑ 𝑏𝑖𝑥
𝑖 = 0𝑛

𝑖=0  as an nth degree polynomial, with 𝑚 > 𝑛. 



So, for 𝑥 ≠ 0, eliminate 𝑥𝑚 . So, previously, we had eliminated 𝑥2 from 𝑃(𝑥) and 𝑥𝑚−𝑛  

𝑄(𝑥), by rewriting it in this form, (𝑎𝑚/𝑏𝑛) is equal to this ok, then you can expand this 

and we will get an expression in 𝑥𝑚−1, 𝑥𝑚−2 and all the way to 𝑥0. 

We can also eliminate 𝑥𝑚 by writing as I had said in that previous example we can write 

the equations in two different ways, we can take 𝑥 common and we can get (
𝑎𝑚𝑥+𝑎𝑚−1

𝑏𝑛𝑥+𝑏𝑛−1
) =

𝑅𝐻𝑆.  

And then, we can show that we get an equation in 𝑥𝑚−1 when you expand this out, which 

will be of the form (𝑎𝑚−2𝑏𝑛 − 𝑏𝑛−2𝑎𝑚)𝑥𝑚−1 and so on, and the last term will be 

(𝑎0𝑏𝑛−1). So, here it was 𝑎0𝑏𝑛, here it is (𝑎0𝑏𝑛−1) plus something else will come, ok. 
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And we can repeat this to obtain 𝑛 equations with the 𝑛th equation given in this form. So, 

(𝑎𝑚−𝑛𝑏𝑛 − 𝑎𝑚𝑏0)𝑥𝑚−1 likewise, some term, complicated term with 𝑎’s and 𝑏’s into 

𝑥𝑚−2 and so on. And we can also construct (𝑚 − 𝑛) equations by multiplying 𝑄(𝑥) by 

𝑥𝑚−𝑛−1. So, eventually, we have all these equations (45) and (46) and we can form the 

Bezout’s matrix.  
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So, the Bezout’s matrix consists of the first term is this, then whole bunch of terms, then 

last equation is 𝑎𝑚−𝑛 all the way to 𝑎0𝑏1 and since 𝑚 > 𝑛, we have assumed so, we have 

𝑏𝑛, 𝑏𝑛−1 all the way to 𝑏0 shifted left by some number of times, and all the way to 𝑏0, the 

last equation is 𝑏𝑛 all the way to 𝑏0 so, where the unfilled entries are all 0’s. 

So, the criteria for non-trivial common factor between the two polynomials non-trivial 𝑥 

is det[𝐵𝑀] = 0. So, if 𝑚 = 𝑛, then in equations (43) to (45), a set of 𝑛 linear independent 

equations in 𝑛 unknowns are already available, ok. So, we do not have to do this 

complicated things. So, we can solve for the unknowns by standard linear algebra 

techniques by row reduction.  
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So, equivalence of [𝐵𝑀] and [𝑆𝑀]. So, intuitively, the Bezout’s matrix and the Sylvester’s 

matrix should be related ok. We are starting from the same set of two polynomials, we are 

solving the same common factors (𝑥, 𝑦) or solutions of both the two polynomials so, they 

must be related. 

So, I showed you for the two quadratics det[𝑆𝑀] = det[𝐵𝑀]. And we can also show in 

general that the det[𝑆𝑀] and det[𝐵𝑀] will be equal for any two polynomials, the 𝑚th and 

𝑛th order polynomial. 

So, in summary, the Bezout’s matrix is obtained by division. Sylvester’s matrix was 

obtained by multiplying each equation. Bezout’s matrix is of less dimension, but the terms 

are more complex in comparison to Sylvester’s matrix. And both give the same 𝑥 and the 

same eliminant det[𝑆𝑀](y) = 0 or det[𝐵𝑀](y) = 0, both the expressions are same, ok.  
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So, with this, we now come to the last item in this inverse kinematics of serial robots. So, 

I want to use whatever we have learned of eliminating joint variables ok, this theory of 

elimination whatever we have discussed to obtain the inverse kinematics of a general 6R 

robot ok. So, this is a fairly advanced topic. For a long time, the exact solutions to how to 

obtain the inverse kinematics of a general 6R robot was not known, ok. 
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So, what is general 6R robot? So, general 6R robot means, there are no constant D-H link 

parameters of special values. So, remember very often, we saw 𝛼𝑖−1 was 0 or 𝑎𝑖−1 was 0, 

or 𝑑𝑖 was 0 or 𝑎𝑖−1 was 𝜋/2 so, cos 𝜋/2 = 0 so, there are some special 0’s and angles 

which are 0 or ±𝜋/2 ok. So, we do not have any of those ok. 

So, if you have special values of D-H parameters such as in the case of the PUMA 560, 

the elimination is always much easier, ok. If there is a prismatic joint, again the elimination 

is much easier, ok because we do not have cos 𝜃 and sin 𝜃. The prismatic joint variable is 

𝑑 so, we do not have cosine and sine of 𝑑, right. 

So, as I have mentioned, the inverse kinematics of a general 6R robot was unsolved for a 

long time. Several researchers have worked on the problem. Historically, Duffy and Crane 

first derived the 32nd order polynomial in one joint variable. So, the idea is that you do 

elimination from a set of equations and obtain a single equation in one of the joint 

variables, which you can solve numerically if required. So, Duffy and Crane in 1980’s said 

that we can derive a 32nd order polynomial in one joint variable. 

So, which means given the position and orientation of this general robot end effector, ok, 

we can reach that position and orientation in 32 possible ways, upper bound ok, many 

would be imaginary. Eventually, Raghavan and Roth in 1993 derived a 16th degree 

polynomial in one joint angle ok. So, this is what is known, and this is what is agreed that 



given a position and orientation of an end effector of a general 6 degree of freedom robot 

with rotary joints, there are 16 possible solutions, inverse kinematic solutions. 

And they used extensively this elimination theory which we just finished, and I am going 

to show you the outline of the approach ok, it is very complicated, they have written many 

papers, it is many many steps are involved, but just to get a feel that we can solve problems 

like this now, that we have tools from elimination theory, I am going to give you the steps 

which are used by Raghavan and Roth.  
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So, the first important step is that the direct kinematics for a general 6R manipulator is 

given by this equation, it is standard by now, that the 6th coordinate system position and 

orientation with respect to the 0th coordinate system is multiplication of 6 link 

transformation matrices. And each of these link transformation matrix say (𝑖 − 1) to 𝑖 is a 

function of only one joint variable 𝜃𝑖 and three constant D-H parameters, this we know ok. 

So, what is the inverse kinematics problem? The left-hand side is given, and we need to 

find the six joint variables in each of these transformation matrices so, in each of 𝜃𝑖. First 

step 1, first write [𝑇]𝑖
𝑖−1 , the link transformation matrix as a product of two matrices ok.  

So, this is Raghavan and Roth’s approach. What is the two matrices? One is something 

which is dependent on only the constant D-H parameters, which is called this 𝑠𝑡 or 



structural part and then, another part which is [𝑇]𝑖
𝑖−1 , which is the joint part, ok. Can we 

do this? Yes. 

So, for example, [𝑇]𝑖
𝑖−1  the structural part × joint part so, the structural part looks like this, 

( [𝑇]𝑖
𝑖−1 )

𝑠𝑡
= (

1 0 0 𝑎𝑖−1

0 cos 𝛼𝑖−1 − sin 𝛼𝑖−1 0
0 sin 𝛼𝑖−1 cos 𝛼𝑖−1 0
0 0 0 1

) 

And the joint part is 

( [𝑇]𝑖
𝑖−1 )

𝑗𝑡
= (

cos 𝜃𝑖 − sin 𝜃𝑖 0 0
sin 𝜃𝑖 cos 𝜃𝑖 0 0

0 0 1 𝑑𝑖

0 0 0 1

) 

So, this second matrix contains the joint variables 𝜃 or 𝑑 and the first matrix contains the 

twist angle and the link length ok. So, this you can see is constant whereas, this is a function 

of joint variable 𝜃 for rotary joint and if it was a prismatic joint, then you will have 𝑑. So, 

that is step 1. 
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Step 2: we reorganize the equation of direct kinematics, rewrite it as 

( [𝑇]3
2 )𝑗𝑡 [𝑇]4

3 [𝑇]5
4 ( [𝑇]6

5 )𝑗𝑡 = ( [𝑇]3
2 )𝑠𝑡

−1( [𝑇]2
1 )−1( [𝑇]1

0 )−1 [𝑇]6
0 ( [𝑇]6

5 )𝑗𝑡
−1, this is the same as 



the direct kinematics equation. So, if you think a little bit about it, we have broken some 

of the matrices into the structural part and the joint part and then, rearranged. 

So, it turns out that the LHS is only a function of 3, 4 and 5 so, 𝜃3, 𝜃4 and 𝜃5 whereas; the 

right-hand side is a function of 𝜃1, 𝜃2 and 𝜃6 ok. So, this is a link transformation matrix 

equation ok. So, there are six scalar equations, or six independent scalar equations in this 

matrix equation. Remember, the last row is 0, 0, 0, 1 so, there is nothing in it. So, out of 

the top 3 × 3 and the last 3 × 1 column, we can only get 3 + 3 = 6 independent equations, 

ok. 

And this six scalar equations are obtained by equating the top three elements of column 

3rd, and 4th on both sides of the equation (50) ok. So, they do not contain 𝜃6. So, we can 

rewrite as  

[𝐴](𝑠4𝑠5, 𝑠4𝑐5, 𝑐4𝑠5, 𝑐4𝑐5, 𝑠4, 𝑐4, 𝑠5, 𝑐5, 1)𝑇 = [𝐵](𝑠1𝑠2, 𝑠1𝑐2, 𝑐1𝑠2, 𝑐1𝑐2, 𝑠1, 𝑐1, 𝑠2, 𝑐2)𝑇.  

So, we have managed to look at these equations and pick the one’s which do not contain 

𝜃6 ok. So, [𝐴] is a 6 × 9 matrix with elements linear in sin 𝜃3, cos 𝜃3 and 1 this is also 

important. So, in this matrix [𝐴], 𝜃3 is there, but they are containing only sin 𝜃3, cos 𝜃3 

and 1, there is no square and product terms and in [𝐵] matrix, it is a 6 × 8 matrix of 

constants, ok. So, we denote the columns 3 and 4 by 𝒑 and 𝒍, ok. 
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So, now, we come to the elimination. So, we eliminate four of the five variables 𝜃1, 𝜃2, 

𝜃3, 𝜃4 and 𝜃5. So, in this set, there is 𝜃1, 𝜃2, 𝜃3, 𝜃4 and 𝜃5, 𝜃6 is not there and how do we 

do that? This is the contribution of Raghavan and Roth in 1993. We obtained a minimal 

set of 14 equations.  

Three equations from 𝒑, equating 𝒑 from both sides, three equations from 𝒍, one scalar 

equations which is the 𝒑 ⋅ 𝒑, one scalar equations from the scalar dot product 𝒑 ⋅  𝒍, three 

equations from 𝒑 ×  𝒍 and three scalar equations from this vector equation (𝒑 ⋅ 𝒑)𝒍 −

(2𝒑 ⋅ 𝒍)𝒑, ok. 

So, you can see 3 + 3 + 2 + 6 = 14 equations they obtained from that matrix equation, ok. 

So, this 14 equations can be written as [𝑃] × (𝑠4, 𝑠5, 𝑠4, 𝑐5… and so on so, 𝜃4 and 𝜃5 is 

equal to [𝑄] × this. So, this [𝑃] matrix is a 14 × 9 matrix containing sin 𝜃3, cos 𝜃3 and 1 

and [𝑄] is a matrix of 14 × 8 constants.  
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So, we eliminate four 𝜃𝑖 in one steps and how do we do? First, use any eight of the 14 

equations in equation (52) previously, any of this from this equation, we use any eight of 

the 14 equation and solve for the eight variables, independent variables quote, unquote 

independent 𝑠1𝑠2, 𝑠1𝑐2, 𝑐1𝑠2, 𝑐1𝑐2, 𝑠1, 𝑐1, 𝑠2, 𝑐2 ok. So, these are eight linear equations in 

eight unknowns, we can always solve for them ok. 



Substitute the eight variables in the rest of the six equations to get [𝑅], which is now a new 

matrix with this function of sin 𝜃4, sin 𝜃5, 𝑠4, 𝑐5 and so on to 1 ok. So, [𝑅] is a 6 × 9 matrix 

whose elements are linear in sin 𝜃3 and cos 𝜃3. They do not have any squared terms in 

sin 𝜃3 and cos 𝜃3. 
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We eliminate 𝜃4 and 𝜃5. We first use tangent half-angles formulas for sin 𝜃3, cos 𝜃3, 

sin 𝜃4, cos 𝜃4, sin 𝜃5, cos 𝜃5. On simplification, we can write some matrix [𝑆] × 𝑥4
2, where 

what is this 𝑥4? That is tan(𝜃4/2). What is 𝑥5? It is tan(𝜃5/2). So, we have converted the 

trigonometric functions, sine and cosine of 𝜃4 and 𝜃5 into polynomials. So, we are going 

to eliminate 𝜃4 and 𝜃5 in one step ok. So, we get this equation. 

And we eliminate 𝑥4 and 𝑥5 using the Sylvester’s dialytic method. So, basically, we have 

some matrix which is (6 × 9) × (9 × 1) equal to 0. So, we pre-shift the rows, we multiply 

some equations by 𝑥(⋅)  and so on ok. So, we generate three additional independent 

variables when you multiplied by 𝑥4 and 𝑥5 in some particular way so, we get 𝑥4
3𝑥5

2, 𝑥4
3𝑥5 

and 𝑥4
3. So, we get a system of 12 equations in 12 unknowns, ok. 
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So, these 12 equations in 12 unknowns can be written as S, 0, 0, S. So, basically, they are 

being shifted to the left when you multiply, and we have this original 9: 1, 2, 3, 4, 5, 6, 7, 

8, 9 variables in 𝑥4
2𝑥5

2 and so on, but then, we have multiplied, and we have generated 

additional variables 𝑥4
3𝑥5

2 and so on. So, we have the form of [𝑆𝑀](𝑦) × 𝑥 = 0. 

So, the so, following Sylvester’s method, we set this determinant is equal to 0 because that 

is the condition such that this column vector is non-trivial ok. So, what do we have? We 

have det[𝑆], which is some horribly complicated terms which contains only 𝜃3 and so on, 

sin 𝜃3 and cos 𝜃3. So, we have expression, long expression which on simplification will 

give us 16th-degree polynomial in tan(𝜃3/2). 

So, if you do the algebra, if you do this simplification, you will actually get a 24th degree 

polynomial in 𝑥3, but there are these common factors which is (1 + 𝑥3
2)4 which can be 

removed ok, this can never be 0. 

So, we can solve this 16th-degree polynomial to obtain 𝜃3 ok. So, 𝜃3 = 2 tan−1 𝑥3 which 

we get. So, how do we solve this 16th-degree polynomial? We have to do it numerically. 
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So, once 𝜃3 is known, we can find 𝑥4 and 𝑥5 from this equation, simply by row reduction 

so, we can find out what is 𝑥5 and what is 𝑥4, these two elements here, just like we found 

out what is 𝑥 after doing elimination.  

So, once we find 𝑥4 and 𝑥5, we find 𝜃4 and 𝜃5, by 2 × tan inverse of 𝑥4 and 𝑥5. Once 𝜃3, 

𝜃4, 𝜃5 are known we can go back and solve the right-hand side. Remember, the right-hand 

side has 𝜃1, 𝜃2 in one set of equations in (52) and we can obtain unique 𝜃1 and 𝜃2. 

Finally, to obtain 𝜃6, we go back to the original set of equation which is [𝑇]6
5 =

[𝑇]5
4 −1 [𝑇]4

3 −1 [𝑇]3
2 −1 [𝑇]2

1 −1 [𝑇]1
0 −1 [𝑇]6

0 . So, this is given to us and each of these are 

functions of 𝜃4, 𝜃3, 𝜃2, 𝜃1 and so on. So, we can solve for 𝜃6 from this equation ok. So, 

these are known and from the (1,1) and (2,1) elements gives two equation in sin 𝜃6 and 

cos 𝜃6 and we can get a unique value of 𝜃6 ok. So, this is the basic algorithm. 
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So, important thing is that we obtain the sixteen-degree polynomial in 𝑥3 from this step. 

So, this is the most important step. How to obtain this matrix S, 0, 0, S into this long 

column vector with 12 variables, in terms of tan(𝜃4/2) and tan(𝜃5/2) and their powers 

ok.  

So, once we know this, we find that the, whatever is in this matrix is only function of 𝜃3. 

So, hence we can obtain 𝜃3, ok. So, once you obtain 𝜃3, then we find 𝜃4 and 𝜃5, then once 

𝜃3, 𝜃4 and 𝜃5 are known, we obtain 𝜃1 and 𝜃2 and then finally, once all the angles are 

known, we find 𝜃6, ok. 

So, what is the summary? Any general 6R robot has 16 possible solutions why? Because 

the polynomial in 𝜃3 was 16th degree. If you have special geometry meaning certain link 

lengths are 0 or some angles are 90 degrees or 0, this polynomial in 𝑥3 can be of lower 

order, ok. If one or more joints are prismatic, IK is much simpler since the prismatic joint 

variable is not in terms of sines or cosines. 

There is no general expression for workspace boundary, why? Because we do not have 

closed form analytic solutions for the 16th-degree polynomial, we can only obtain the 

solutions of this 16th-degree polynomial symbolic in numerically. So, how do I find the 

workspace? If all the roots of the 16th-degree polynomials are complex, then this position 

and orientation is not in the workspace of the manipulator ok. So, this is an important 

concept. 



So, I have given you a 16th-degree polynomial, I go to MATLAB and find the solution of 

this 16th-degree polynomial and see that all the roots are complex conjugates. So, then the 

point from which I got the 16th-degree polynomial is outside the workspace. 

All the inverse kinematic solutions and entire workspace may not be available due to joint 

limits and limitations of hardware. This is also very important concept ok. So, till now, we 

have not assumed that there are joint limits. So, in an actual robot ok, you cannot move 

the joint beyond certain limits. So, if you want to consider the joint limits, then the 

workspace is further reduced. 

So, with this, we will stop this lecture. So, in this lecture, I showed you a way to eliminate 

from two polynomials 𝑓(𝑥, 𝑦) = 0 and 𝑔(𝑥, 𝑦) = 0. First 𝑥 and then solve for 𝑦 and then, 

ultimately solve for 𝑥 again and then, I showed you that we can use this Sylvester’s method 

or Sylvester’s matrix, his idea behind eliminating and then finding the solutions for 𝑥 and 

𝑦 in solving the inverse kinematics of the general 6R robot ok. So, with this, we will stop. 


