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Okay, so welcome back to one more lecture Introduction to Soft Matter. Last time, we started 

looking at what is called a Maxwell’s model, Maxwell’s viscoelastic model. And, we started 

deriving some of the simple formulas that are a consequence of the model.  
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So, just to refresh our memory, what we will do is, so in the Maxwell model is a very simple 

model where you have 2 over a spring and you have a dashpot in series and these two are 

considered to be massless and then we use this and relationships that are integral to a spring 

and a dashpot to derive the constitutive equation. And the constitutive equation came out to 

be of the form, we can write it in a couple of different forms.  

So, we say, you can write it in this way or if you want you can write it as in this other fashion 

also where this lambda is a relaxation time scale is given by the ratio of eta and E. And we 

saw that for the stress relaxation function for this particular situation, that comes out to be of 

a very simple form is given by the E, which is a modulus. And there is an exponential 

decaying function.  

Similarly, we derived the equation for a Creep function and then that also came out to be a 

simple form and however in this case, now to remember that, while the stress relaxation is 

exponential in nature, the Creep turned out to be linear in nature and this linear nature of 



creep is not extremely realistic, but something that can be still worked with in different 

situation.  

It depends on the particular situation whether or not that is a proper adequate model. So, the 

stress response or the strain response, the stress response function and the Creep function. So, 

the stress relaxation function and the Creep function, they are obtained as special cases of an 

applied strain or an applied stress.  

(Refer Slide Time: 2:54)  

 

 

So, the next question is once we have gotten these expressions is what happens if you have an 

arbitrary stress history or a strain history? So, let us first take a look at what happens if you 

have when you have a response for an arbitrary strain history and here what we imply is that 



that is strain history for example is known, so epsilon s for that set of s is, which is less than 

the current time, but greater than 0. This is given to you.  

And then you are asking the question, what is your current state of stress? So, if the strains 

are known to you then we know that a viscoelastic material has memory. So, what we will do 

is to solve this particular problem. So, to solve this particular problem, what we will do is that 

we will write this equation such that we have the stresses on our left hand side, so we have 

the stress so, we are writing this ODE.  

So, this sigma is what you want to figure out and epsilon is some, given to you. Now, to solve 

this equation, you probably have realized that this is a first order linear ordinary differential 

equation. Now, when you have an equation of this form and you want to solve for the general 

situation, then a method which is called the method of integrating factors is usually applied. 

So, just let us do a quick rehash of what the method of integrating factors is. So, let us say 

there exists a different ODE which is given as dy by dt plus P some function of time 

multiplied by y and on the right hand side, you have a function of time. This is a linear 

ordinary differential equation, when Q t is equal to 0 then you end up with a homogeneous 

linear differential equation.  

If Q t is identical equal to 0 always then you have a homogeneous equation, if you have Q t 

as a nonzero variable then it is a non-homogeneous equation. Now to solve this particular 

case, we introduce another function called v t and we multiply both sides by v t. And now if v 

t is of this particular form, then this allows us to write this previous equation as and this final 

form formula you can solve by integrating.  

So, this v t is called integrating factor. So, for our case, let us find out what the integrating 

factor is. So, what is v t for us? We have integral of and here you have for y you have sigma. 

So, you have, you end up with 1 by lambda dt. So, you end up with e to the power t by 

lambda. So, this is our integrating factor.  

Now, if you use this and then multiply both sides by the integrating factor you will end up 

with a situation where you will have the time derivative of e to the power t by lambda 

multiplied by your stress, current stress. And on this side, you will again have E, you have the 

integrating factor and then you have the derivative of the strain.  
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Now, to solve this you integrate both sides and you integrate from 0 plus to a time t. So, the 

left hand side then if you do this integration and it you end up with, it is your t by lambda 

sigma of time at time t, which is the variable that you seek minus sigma at 0 plus. So, the 

epsilon here e to the power t by lambda factor here becomes just 1 in this case. And on the 

other side you will still have 0 plus this is where integrating over E.  

And now, you are integrating this quantity from 0 plus to some particular time t. So, I have 

already used up the time the variable t, so I am just going to use some other dummy variable 

let us say s here. And now, we know that sigma 0 plus and epsilon 0 plus the share a 

relationship. And the relationship is if we go back to this original equation, so the jump 

between the 2 variables epsilon and sigma are related to each other.  



And they are related by, so if you introduce this back into this previous equation, you will 

end up with the stress at the current time. And I am only having that on the left hand side. I 

am going to move this back to the right hand side. So, you will end up with e to the power 

minus t by lambda epsilon 0 plus, I have taken this factor and I have moved that the 

exponential factor I have also moved on to the right hand side. 

You have the integral to the second quantity E to the power minus by lambda t minus s. Now, 

what does this quantity remind you of? This is your stress relaxation function, so we can just 

write this rewrite this previous equation in the form of the stress relaxation function. So, this 

becomes an important equation for us.  

I am just going to, so we have seen 3 important equations till now, the stress relaxation 

function, the Creep function and then we have looked at the stress which comes out as a 

result of previous provided strain history. This is a very important equation because we will 

see that this comes up again again, there is a particular reason why I put it in the form of the 

stress relaxation function. We will get to know that a little bit later y. 
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So, now that we have looked at the response to an arbitrary strain history, then we should be 

looking at the response to an arbitrary stress history also. So, let us take that response to an 

arbitrary stress history. So, here, the question is flipped, you have been provided, let us say 

the stress as a function of time. And the question you are trying to ask is what is the strain at 

the current time. That is the question.  



And as we know, again, just like the previous case, the entire stressed history is going to 

influence the strain at the current time. And the current time, strain should be a functional 

form that takes into account the entire history of imposed stress on the material. So, we just, 

so we rewrite our equation, but we will flip it a little bit, because we want to be sure which is 

the variable we want.  

So, since epsilon, is the variable I want, I am kept it on the left hand side and we just rewrite 

this equation. Now, you integrate both sides, if you integrate both sides from 0 plus to the 

current time t, then you end up with, you have 2 integrals on this side, both going from 0 plus 

to t, you have a sigma dot. And then again, I am using a different variable, a dummy variable 

s here, because I have already used the variable t plus 1 by lambda and let me put the limits.  

So, now, you have a functional form which has a derivative of the stress here, but you have 

another one which is just has a derivative. So, here we can actually convert this second term 

on the left hand side. The right hand side sorry, the second term on the right hand side can be 

converted into an analogous form with sigma, if we apply integration by parts.  
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So, just to remind ourselves what integration by parts is, we are just write it on the side, recall 

integration by parts. And in this you have an integral u, v dt, let us say, if you are computing 

this, then you can rewrite this as in u into the integral of v dt minus u dot integral of v dt. And 

there is another dt here.  

So, using this integration by parts, what we have to do is we have to simplify and I want to 

get rid of the pure stressed term and converted into a derivative form and I am going to write 

this as, see I can choose this quantity here. And here this is variable s and this variable s this 

is being evaluated from 0 to t and you have minus integral again plus t, s minus t sigma dot, 

so I will just apply the integration by parts here. 

So, by applying the integration by parts and rearranging the terms, we can rewrite the left 

hand side as being this quantity. And on the right hand side, you will now have sigma 0 plus 



and then you have the quantity under the integration side which goes from 0 plus to t and here 

you will have sigma dot s and then the bracket you will have 1 plus t minus s by lambda ds.  

And you can see that this quantity right here, this is basically this can be summed up and we 

can write this as 1 plus t by lambda. And then once you bring this E over onto the right hand 

side, then this equation simplifies further and this we end up with epsilon t is, this is now the 

J of t and this multiplied by sigma 0 plus and now you have the quantity under the integration 

side and you can see that this quantity is the Creep compliance written appropriately.  

So, this against the limits of the integration still remain, the Creep compliance now takes on 

the form t minus s and you have sigma dot s ds. So, this is an important equation. So, you can 

see that things have sort of gotten flipped. So, when you are looking at an arbitrary strain 

history, then you have here the stress relaxation. So, if you have an arbitrary strain history, 

then you have the stress relaxation function appearing here whereas, if you have an arbitrary 

stress history, then you have the Creep functional form coming in here.  
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So, with this we have sort of looked at some of the very-very important results for the 

Maxwell equation or the Maxwell‘s viscoelastic model. Now, there is another important 

model in viscoelasticity, so Maxwell model is one of the simplest possible schemes that you 

have, but there is another one and that is called the Kelvin Voigt Viscoelastic model. So, we 

will look at now Kelvin Voigt Viscoelastic model.  

This model was introduced in 1874 by Meyer, so Meyer 1874 introduced this model, 

introduced a model which is a model which was different than the Maxwell’s combination of 



spring and dashpot and it is now very much known as the Kelvin voigt body and so and is 

now known as the Kelvin Voigt.  

I have not introduced the model I will introduce that in a second body as far, so unfortunately 

Meyer’s name is missing, but Phan-Thien in his book, understanding viscoelasticity, he 

clarifies that this should be called, the Phan-Thien says that this should be called Kelvin 

Meyer Voigt model. And a good reference to look up this is the book called Rheology and 

Historical Perspective and that is written by Tanners and Walter and it was published in 1998.  

So, if you are interested in the history of this reality and the various models that have come 

up, you can refer to their book. Once again that book is called Rheology and Historical 

Perspective by Tanner and Walters. So, let us look at this particular model. So, what is this 

model all about? So, this model is, now instead of placing the spring and the dashpot in 

series, the spring and the dashpot are placed in parallel.  

So, this is your E, this is eta and the 2 bodies have been placed in parallel, you have the 

forces on this, when you apply a force f t is undergoes a deformation let us call it delta x. And 

then the question is what is the relationship between f t and delta x and that is how we have 

been dealing with this, we have been applying force balance. Once again let us remind 

ourselves that these 2 are massless. So, that is a very important point, so just we will make a 

note of it. Note, spring and dashpot are both massless. 
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So, individually I think I need a new space. So, what we are going to do, let us break up this 

space into 2 parts. So, you have, let say the spring,  let us say the force in this is experience 

that the spring is experiencing is F s and the information it undergoes is delta x s. Similarly 

for the dashpot, so let us say we have a force F d, sorry, I just made a mistake. So, this is, we 

should put F s in the subscript this is time, this is subscript.  

So, this is d subscript, d standing for the damper the r, dashpot delta x d. So, from force 

balance, for the model, if you look at this model for force balance, we can say that your F of t 

is equal to force in the spring for the force in the dashpot. From the geometrical constraint, 

now geometry here plays an important role because you have placed this in parallel. What is 

implies is that the deformations or the extensions in both the spring and the dashpot have to 

be the same.  



That is why, that is the meaning of this particular representation. So, from geometry we know 

that the deformations are going to be equal in the 2 cases sorry, so from geometrical 

constraint tells us that the system deformation is same as the definitions being seen by the 

spring and the dashpot. So, now let us write the individual equations that apply to the spring 

and the dashpot.  

So, the individual equations should be that that should just be a result of how spring behaves, 

we have, so now if I add these 2 equations, this equation here right over here, then what we 

end up having is F s plus F d, which is we know from force balance is equal to F d. So, my 

addition gives me and that these 2 by the way, these are equivalent to writing it in the form of 

delta x, which is the, what this entire system is seeing.  

So, I can just write F t as E times, so where this process of addition I can write it as, so now 

we have a relationship what we are seeking initially a relationship between the force and the 

system displacement. So, this suggests a constitutive equation, equation of the form sigma t is 

equal to E times epsilon t plus eta times epsilon dot and this is the governing constitute 

relationship for the Kelvin Voigt model.  

Now just compare this to the Maxwell model, we had a derivative and stress in the Maxwell 

model which is not existing here. But, we have now have we have the derivative and strain 

still there, but we have an extra strain term without the derivative that also appears. And it 

can be solved by almost the exact same methods that we have solved for the Maxwell case. 

Now, let me, so we will end here for today's class and then we will discuss the solutions to 

this oriental differential equation in the next class. 


