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Implications of CIF, converse of CG theorem

Hello good morning, welcome to this  lecture on complex variables.  Last time if you

recall we were looking at extensions of the Cauchy integral formula.

(Refer Slide Time: 00:37)

And this is where we left off, ok. We formulated this limit delta z tending to 0, f of z plus

delta z, minus f of z, by delta z. And we put it in terms of the original f of z. We took the

limit delta z tending to 0 and we found that it happens very smoothly. There is nothing

preventing this limit from existing.

So, this is bound to exist and this is f dash of z; this is f dash of z. This is the derivative

of f of z. Similarly, we can write a next level derivative, ok.
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Which is: limit delta z tending to 0, f dash z plus delta z, minus f dash of z, divided by

delta z, ok. And how will this look like? This looks like limit delta z tending to 0, one

over twice pi I,  integral  counterclockwise C, 1 over s minus z minus delta  z,  whole

squared, minus 1 over s minus z, whole squared, f of s d s, by delta z, ok.

And again this will also exist; this is f double dash of z. So, if we continue like this, the

nth derivative will also exist: f dash n, f dash n, the general form will turn out to be, n

factorial by twice pi I, integral counterclockwise C, f of s d s by s minus z, to the power n

plus 1. So, if a function is analytic, if f of z is analytic on and within, on and within a

simple closed contour C, what Cauchy integral  formula tells  me is that  all  orders of

derivatives, all orders of derivatives exist inside C, ok.

It  is  also  very  important.  So,  once  a  function  is  analytic  at  a  point,  all  orders  of

derivatives of f of z exist at that point, ok; this is also very big result. Now, we said

earlier, that if a function f of z is analytic on and inside a simple closed contour C, then

integral closed contour C, f of z dz is equal to 0. We said this. This was the Cauchy

Goursat theorem, ok. And we said, at this stage, it is one way. f of z is analytic implies

this is true ok. We did not state that the other way is true.

If I suddenly find, ok, if for a closed contour integral f of z dz is equal to 0, is f analytic

there or not, is f analytic in that domain, we did not say anything. So, now what we have



here, we will use the very first theorem we stated and for now let us look at a simply

connected domain, ok.

Now, suppose in a simply connected domain I find that integral; closed contour on a

simple  closed  contour  C,  f  of  z  dz  happens  to  be  0,  happens  to  be  0,  in  a  simply

connected domain on a certain simple closed contour, I find that f of z dz happens to be

0, ok. Then the first theorem says that in this simply connected domain, f of z has an anti

derivative, ok. That means what? There is a capital, let us say capital F 1 of z, ok; which

is such that d F 1 of z dz is equal to f of z. There exists a function whose derivative is this

function f of z.

So, because there is a derivative of F 1 of z; in this entire simply connected domain, F 1

of z is analytic. But we have just seen the consequences of Cauchy integral formula, that

once a function has a derivative at a point, all orders of derivatives exist. So, F 1 of z has

a derivative which is f of z ok, then f of z has a derivative which is f dash of z, then f

dash of z has a derivative which is f double dash of z and so forth.

And therefore, f z becomes analytic, ok. So if in a simply connected domain you find:

now this is a complete converse; if in a simply connected domain you find that integrals

over closed contours f of z dz are 0, then f of z is analytic in that domain. So we have a

complete converse now, ok. If in a simply connected domain, the function is analytic on

every  simple  closed  contour  on  and  inside,  then  integrals  are  0.  And  the  complete

converse:  if  integrals  over  every  simple  closed  contours  are  0,  then  in  that  simply

connected domain f of z is analytic. It is a complete converse.

Now, the next topic. We have covered more or less the theorems that we need, ok. From

here on our orientation would be to take examples of contour integration because that is

the main focus, ok. And that  is the reason I have quickly gone through the relevant

theorems, ok. The one main item now remains is this Cauchy principle value, Cauchy

principle value.
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The Cauchy principle value is this; when we do improper integrals, integrals where the

limits go to infinity or there are singularities within the domain, ok. For example, if we

have an integral of this form: infinity to infinity, minus infinity to infinity, f of x d x let

us say, ok.

Then what  is  implied  is  that  this  is  equivalent  or  how it  is  computed  is  that  this  is

equivalent to limit b tending to infinity, integral 0 to b, f of x dx, plus limit C tending to

infinity, integral minus C to 0, f of x dx, ok. This b is a different number, the C is a

different number and they are sent to infinity on their own, ok. This is how the improper

integral is implied, ok. Now let us take this example; I have an integral, integral minus

infinity to infinity, x dx, ok. So, if I send the upper and lower limits to infinity on their

own.

So, I write this as limit, say minus a comma b, tending to infinity x dx and what happens

over here is that I get x square by 2, with b and minus a, and limit ok. Limit a comma b

tending to infinity, ok. I can put a over here; let me do that. I take minus a, minus a

comma b tending to infinity, ok. So, what this gives me is an infinity minus infinity; b

goes to infinity on its own, a goes to minus infinity on its own.

So, I get the answer as infinity minus infinity. So, it is indeterminate. Instead, what I will

do is, I will say that integral is minus R to R, limit R tending to infinity x dx, ok. Then I

get x square by 2, R minus R, limit R tending to infinity, ok. So, this gives me limit R



tending to infinity, R square by 2, minus R square by 2, which is 0, ok. Here I got b

square minus a square by 2, ok. Here I got b square minus a square by 2 whereas here i

get R square by 2 minus R square by 2; so this is 0 first. So, this is called the Cauchy

principle value.

So, we will be seeing integrals in our future lectures and they will be done in the Cauchy

principle value sense ok; that is to be noted. We need one more last theorem which is

this, which is very famous Cauchy Residue Theorem; which many of you should have

seen in your earlier classes, ok; which says let C be a positively oriented simple closed

contour. If a function f is analytic inside and on C, except for a finite number of singular

points; of singular points z k; k going from 1 to n, inside C.

Then integral over the closed contour C; taken in the positive sense, f of z dz is equal to

twice pi i, times the sum of residues of f of z, ok; z is equal to z k. This is a theorem all

of you must have seen before, ok. Now, I will not prove it; we will accept it as it is and

this is very useful when doing our contour integrations. So, now, we are ready to take a

look at our first example in contour integration, ok.
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So, contour  integration.  There will  be other  theorems and corollaries  that  one would

require. I will introduce them as and when we need it without proof, ok. For detailed

proof one can again go back to the text by Churchill and Brown. So, let us see the first

example contour integration first. I have this integral I given by integral minus infinity to



infinity, dx by x square plus 1. All of you must have seen this integral at one time or

another. How would we do it traditionally? We take a substitution; x equal to tan theta so

that my dx is equal to sec square theta d theta. When x is plus infinity, when x is plus

infinity; theta is equal to pi by 2 and x is at minus infinity, theta is minus pi by 2.

And so after I take the substitution, my integral limits will change: minus pi by 2 to pi by

2, sec square theta d theta, by tan square theta plus 1. tan square theta plus 1 is again sec

square theta. So we can cancel these two. So, we get integral minus pi by 2, to pi by 2, d

theta, which is equal to pi, ok. Now, we would like to use contour integration in the

complex plane to achieve this result.

Now, the main idea in doing contour integrations in the complex plane is that I have an

integral I ok. I have an integral I, let us say a real integral I; let us say it is some integral

of some function f of x dx real variable,  ok. I want to use the principles of complex

variables to find the value of this real integral.

So, now what I do is I create another integral J, ok, which is an integral over a closed

contour, ok; closed contour C of my choice, ok. And some other function or a function

now of a complex variable d z mostly x gets replaced by z, but occasionally function

itself changes, for convenience, ok; so, we replace that integral with this. Now what is

this contour like? This contour, let us say this integral is from some a to b, ok. So, this

contour must include that part of a to b, ok; f of z dz plus other portions f of z dz, ok.

So, in the portion a to b; z also must be equal to x, so this is actually f of x dx; that

means, z becomes real in this leg of the integral. And then because we have a closed

contour; in addition there will be a portion some other contour C 1; which makes a to b

and C 1 together  a closed contour.  Now, we have a  closed contour  over  a  complex

function. So, that is going to be equal to twice pi i times the sum over residues, ok; here

comes the residue theorem.

So,  what  is  happening? I  have replaced my original  integral  with an integral  over  a

closed contour, ok. As I said, the same function which has z as argument or slightly

different function, but main point is the portion I want to be integrated that is a to b, f of

x dx must be one part of the contour. And in making it close, there is another portion that

is coming in, ok. And this together, because now this is a closed contour C; let us call



this C 1, I will have the answer equal to twice pi i times the residue theorem or residues

of f of z.

Now, the contour is so chosen that I should be able to find the answer to this portion, ok;

sometimes there can be more number of integrals in this portion. So, I should be either

easily be able to evaluate this integral or find that it is going to 0; very often it goes to 0,

ok.  So,  then what  happens is,  if  this  is  not  0  it  comes on to  this  side and becomes

whatever the value it acquires, ok. Then I compute the residues of my function; now

having  a  complex  argument.  So,  the  integral  I  want  is  equal  to  the  residues  minus

whatever additional portions have come up.

So, basically I do not touch,  I do not touch; I do not touch the actual integral, that is the

whole idea. I do not evaluate this integral which is my goal, directly. I am going to do it

indirectly, that is the idea of contour integration. So, now, let us see in this case, I have a

function, f of x equal to 1 over x square plus 1, ok. So, I replace it with f of z which is 1

over z square plus 1, ok. z is now suddenly the complex variable, ok. So, if I call this

integral the real integral the I; I have integral minus infinity to infinity dx over x square

plus 1.

And then I replace it with J, which will always represent my closed contour integral;

closed contour to be chosen and this in this case is exactly replacing x with z. So, what is

this contour that I have to choose? The choice I make is this ok; I come from all the way

from minus  infinity,  ok,  I  come from minus  infinity;  I  go  to  plus  infinity.  I  take  a

semicircular contour in the upper half of the complex plane, come back and join at minus

infinity.

So, the direction is counterclockwise, ok. So, the whole contour I will denote by C; this

portion I will denote by C R, because this is a semicircular arc at a radius R; R tending to

infinity. So, you can now see that this closed contour integral includes minus infinity to

infinity and along this my z is equal to x. So, I have dx over x square plus 1, ok, but

additionally I have an integral over a semicircular arc C R; where the R is tending to

infinity, ok. Here, the variable is complex dz by z square plus 1. So, this example I will

take up in the next class and we will finish it; I will close it here for now.

Thank you.


