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Simple Definitions

Hello good morning, welcome to this short series on Contour Integrations using complex

variables ok.
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Last  time  we  stopped  while  defining  a  few curves,  arcs  and  contours.  So,  we  will

continue from there. I was giving an example of a simple contour. A simple contour was

z equal to x plus i x and x plus i within these limits.

So, we had seen last time that the first branch is a straight line, the second branch is a

horizontal  straight  line.  So,  each  of  these  pieces  1  and  2  is  a  smooth  arc.  It  is

differentiable and they are joined over here to make a simple contour. So, here there will

be a kink in z dash, the derivative of z will have a kink over here. So, this is a simple

contour.

The next example the next example is again Z parameterized in this following way e to

the power i theta for 0 less than theta less that 2 Pi. This is very simply a circle it is very

simply a circle, ok. Now, the endpoints are equal. The z a and z b are equal. So this is a



simple  closed  contour,  simple  closed  contour,  ok.  It  happens to  be  differentiable  all

around. It is no more bits and pieces addition of smooth arcs. A simple closed contour is

differentiable everywhere. Now, we want to talk about integrations because that is our

goal. We are going to do contour integrations, ok, contour integrations.

So, what about contour integrations? Since we are in a 2D region on the complex plane,

on the complex plane, on the complex plane. it  is a 2D or 2 dimensional region, 2D

region, 2 dimensional region. The integrations, the integrations of functions end up as

contour integrations.  End up as, end up as contour integrations which means I have

functions defined on lines. I have a line in the complex plane, ok.

And there is a function defined on this line that is sitting in the complex plane. Now the

integration of this ends up as a contour integration ok. Hence, the value depends not only

on the contour, but also on the function both of them get involved in telling us what is

the value of the integral, so we will see that ok.
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So, more about integration. A real function, a real function f of t that is, that is piecewise

continuous on an interval, on an interval a less than equal to t less than equal to b is

integrable, is integrable, ok. So, if I have the independent variable as t and I have this

function which behaves like this. Say, this piecewise continuous. Nowhere does it blow

up ok, but it takes short jumps, short finite jumps. The function takes more short finite

jumps this is f of t. So, now, we can find the area under the integral and find the area



under  the  curve.  Nowhere  is  it  going  back  to  infinity  that  is  what  is  piecewise

continuous.

So,  a  piecewise  continuous,  a  piecewise  continuous  function,  piecewise  continuous

function is finite everywhere,  is finite everywhere,  is finite everywhere, but there are

points, there are points where the left limit, where the left limit, left hand limit, left hand

limit, left hand limit is not equal to, is not equal to the right hand limit, right hand limit,

ok. So, somewhere here if I approach from let us say the right side, I have this value. I

approach from the left side I have this value. So, you have these jumps. But the function

itself is finite, it is bounded everywhere.

Thus, as we see from the picture, integral f of t dt exists, is a finite number, exists ok.

Now, we will use this idea with respect to complex functions. So, integrals of complex

valued functions, of complex valued functions which are defined, which are defined on

contours,  these  functions  are  defined  on  contours  end  up  as  line  integrals,  as  line

integrals or contour integrals or contour integrals, ok. And they are written as, they are

written as integral over some simple contour f of z dz or to be even more specific moving

from one point z 1 to another point z 2 on some particular contour fz dz.

So, now, we will connect this idea of line integral or contour integral to the earlier idea

of the real line integral, where the function was piecewise continuous. We will connect

the two ideas.  So,  suppose now, suppose now C is  a simple contour;  C is  a simple

contour; C is a simple contour and it is given by let us say, it is given by z equal to z of t,

where as before t has these limits ok. Now, z of t being a simple closed contour, z of t is

a piecewise, piecewise smooth arc. We said that before, piecewise smooth arc.

And so, z dash of t takes jumps. It is not continuous, but takes short jumps, takes jumps.

It is piecewise continuous ok. So that is the nature of z dash of t ok. Further, let f of z, let

us see further, let f of z be piecewise continuous, be piecewise continuous on C, then let

us see what happens, ok.



(Refer Slide Time: 14:07)

Then  what  happens  is,  we  first  write  the  integral  on  C,  f  of  z  dz,  ok.  Now,  z  is

parameterized in terms of t, so we will write this further as U of t plus i V of t. Now dz is

z dash of t dt, ok. So, what is the use? Use is this: I have integral C, U of t plus i v of t, z

dash of t is again, x dash of t plus i V dash of t, dt, ok. Now, if we write it in terms of real

and imaginary, ok, so I get this integral C, the real part will be U of t, x dash of t, minus

v of t, what happened here, this will be y, sorry, this will be y, minus v of t, y dash of t,

dt, plus the imaginary part, integral over C, U of t y dash of t, plus V of t x dash of t, dt.

Now, x dash t and y dash t are piecewise continuous. Why? because z of t is a simple

contour composed of many smooth arcs. Same here, y dash t and x dash t are piecewise

continuous. The function f of z itself was stated as piecewise continuous on this arc. So

U f t and V of t are piecewise continuous. 

So,  the product of you know the real component  and the imaginary component they

themselves  are  both  components  are  piecewise  continuous.  So,  both  integrals,  both

integrals  are piecewise continuous,  or both integrands,  actually  both integrands;  both

integrands  are  piecewise  continuous.  And  therefore,  the  integrals  will  exist,  ok.  So,

therefore, the integral will exist, will be finite, ok.

So, we will  be dealing with such functions, such nice functions which are piecewise

continuous, except occasionally, there will be singularities and because of singularities

we will  have to invoke some theorems and deal with them. Now, that  is  one set  of



definitions that are related to integrations, ok. Now we need more definitions, some more

definitions, some more definitions. 

What is an epsilon neighborhood of a point, ok? What is an epsilon neighborhood of a

point? The epsilon neighborhood, the epsilon neighborhood; the epsilon neighborhood of

a point z 0 in the complex plane, in the complex plane consists of all points z, consists of

all points z, lying inside, lying inside, ok, but not on circles, but not on circles, centered

on z 0, centered on z 0 and it is given mathematically by z minus z 0 magnitude less than

epsilon.

So, if you imagine z 0 as the center and there is an epsilon radius circle around it ok, this

radius is epsilon and this point is z 0. Now, the epsilon neighborhood of z 0 is all the

points  in  here excepting  the points  that  are  on this  circle.  And epsilon is  a  positive

number ok.  Now, what is  a set in a simple sense? A set is a collection of points;  a

collection of points; is a collection of points in the complex plane under a certain rule,

under a certain rule, under certain rule, it is a rough definition.
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Next a point, a point, a point z 0; a point z 0 is said to be an interior point, an interior

point, an interior point of a set S, of a set S, ok, whenever there is some neighborhood,

there is some neighborhood; some neighborhood, there is some neighborhood of z 0, of z

0 that contains, that contains only points of S only points of S; of S, ok. So, there is some

set, there is a set and z 0 is some point. It is an interior point how do we say, we take a



neighborhood of 0; however, small it may be then all the points in that neighborhood are

belonging to S.

So,  you  can  move  this  points  z  0  slowly  towards  the  boundary,  ok,  now  the

neighborhood of z 0 may be shrinking, becoming smaller and smaller and smaller and

smaller, but at any instant around z 0 there is a small neighborhood around it such that all

the points belong to S, ok. So, that such a point is called an interior point. Now z 0, z 0

let me write it here; z 0 is called an exterior, an exterior point of S, ok, when there exists,

when  there  exists,  when  there  exists  a  neighborhood  of  it,  a  neighborhood  of  it

containing no points of S, no points of S, ok.

So,  now, we are outside,  z 0 is  outside.  Let  us  say it  is  far  off,  then there is  a  big

neighborhood. This is z 0, it is a big neighborhood. None of these points belong to S.

Now, let  us say that  z 0 starts  coming closer  and closer  and closer and closer,  still;

however close it comes, I will find a small neighborhood such that points within it still

do not belong to S, so such a point is called an exterior point.

Now, if  z 0 is  neither,  is  neither  an interior,  an interior  point,  nor an exterior  point;

neither an interior point nor exterior point ok, then it is a boundary point. It is a boundary

point of S. It does not satisfy either definition completely. It is a boundary point of S ok,

so that must be obvious. Next, what is an open set, ok; what is an open set? A set, a set is

open, set is open if it contains none of its boundary points. We will close this session

over here. We will continue at this point in the next lecture.

Thank you.


