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Lecture - 03
Analytic Functions

Hello, good morning. Welcome to this next lecture on Complex Variables.
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If you recall last time, we had stopped at the Cauchy Riemann equations. Which said,

that if a function f of z has a derivative at a point Z 0, then necessarily it is true that U of

x is equal to V of y and U of y is equal to minus V of x, where f of z was written as U of

x comma y, plus i times V of x comma y, ok.

So, Cauchy Riemann equations  or conditions  are  necessary conditions  and necessary

implies that if there is a derivative, if f of z has a derivative; that means, it has an f dash

of z at a point, then the CR equations must be satisfied, must be satisfied. So, one way

theorem, ok; if f dash exists then CR equations necessarily are satisfied. The other way is

not true. If we find that CR equations are satisfied, are satisfied, it is not sufficient to say

that f dash of z exists, ok. So, these are not sufficient conditions but these are necessary

conditions. 



Now, what  makes  a  sufficient  condition?  In  addition  to  CR equations,  if  the  partial

derivatives, in addition to the CR equations if the partial derivatives U x, V x, U y and V

y are continuous then f  dash of z exists.  So,  these are the sufficiency conditions.  In

addition to CR equations, partial derivatives U x, V x, U y, V y are continuous, then f

dash z exists, ok. So, let us look at some examples. Let us look at some examples, ok.

So, we consider a nice function f of z is equal to Z squared, ok. It is a nice function. We

know it has a derivative at every point in the complex plane, such that f dash of z is equal

to 2 times Z. It is already known. So, it is analytic, it has a derivative. Then we check, are

CR equations satisfied. Are CR equations satisfied. We check, ok. Now, Z is equal to x

plus iy and therefore, Z square, is equal to x square minus y square, plus i 2 xy, ok. 

Now, let us check the CR conditions. So, this function is U x comma y and this function

is V, ok. So, let us do U of x. U of x is equal to twice x, then U of y is equal to minus

twice y. Then V of x is equal to 2 y and V of y is equal to 2 x, ok. So, you see that U x is

equal to V y, U x is equal to V y and U y is equal to minus V x. So, since this function

has a derivative, necessarily the CR equations are satisfied, ok. Now, we take another

example where it does not work, ok.
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So, next example is, let f of z be equal to magnitude of Z square. Again, if we consider Z

to be equal to x plus iy, then magnitude of Z; magnitude of Z is equal to square root of x

square plus y square.  And magnitude of Z squared is  equal  to just  x squared plus y



squared, and I will just add this plus i into 0. So, this part is U of x comma y and this part

is V of x comma y. 

We have already seen that magnitude of Z square is not a very well-behaved function, it

is not analytic, it does not have a derivative, and so now, we will check if U x is equal to

V y. Now, U x is here twice x and V the function itself is 0, so there is no question of V

y. V y is 0. Similarly, U y is equal to twice y the other side V x is 0, ok. Therefore, there

is no equation, there is no way this can be equal. So, CR equations are not as satisfied,

CR equations are not satisfied, ok.

Now, we will move on to what are called analytic functions, ok. We will move to the

next topic called analytic functions. A few definitions will come over here. So, I will

partition the space this way, it seems convenient, analytic functions. So, here are a few

definitions.  So, there will be some writing to do, ok. A function f of z, f of z of the

complex variable, of the complex variable z is analytic in an open set, in an open set, if it

has a derivative at each point in that set. If f is analytic at a point z 0, at a point z 0, it is

analytic in the neighborhood of z 0, ok. 

So, here a few cases arise for our better  understanding. So, one is a function can be

differentiable;  can be differentiable  at  a point,  but not  analytic,  but  not  analytic,  not

analytic at that point, ok. We saw this case just earlier, this function f of z is equal to

magnitude of z square, did not have a derivative anywhere except at z equal to 0, and

nowhere else does it have a derivative. So, the fist function is differentiable at one single

point z equal to 0, but not analytic at that point because in the neighborhood of z 0 it

does not does not have derivatives, ok.

The other case arises, if a function fails to be analytic, fails to be analytic at a point z 0,

but is analytic, but is analytic in every neighborhood of z 0. So, it is not well behaved at

z 0 only, around it it is well behaved, then then z 0 is called a singular point, is a singular

point of f of z, ok.

We will see such cases in the future when we solve problems, ok. So, that is as far as

analytic function is concerned.



(Refer Slide Time: 16:01)

Now, we move to a  few definitions  which  are  required,  ok.  So,  here,  these  are  the

definitions. So, let us call this a few useful definitions, useful definitions. What are they

about? They are about curves, arcs and contours, ok. Now, let us see, what is in arc, ok.

What is an arc? A set of points, a set of points, a set of points z is equal to x comma y, or

this is also written as x plus iy. I have briefly introduced a new notation the complex

variables that is written this way also. 

So, a set of points x plus iy is called an arc, is called an arc, ok, if x is a function of this

variable real variable t and similarly y is a function of the real variable t and t extends

between a and b on the real axis, ok. So, such a set is called an arc, ok; t lies increasingly

between a and b, x is a function of t, y is a function of t, then z which is x plus iy or x of

t, plus iy of t, is called an arc, ok. 

Now, x is equal to x of t and y is equal to y of t are continuous functions, must be, are

continuous functions, continuous functions of t, ok, they cannot be discrete functions of

t. x is a continuous function of t, y is a continuous function of t, then z is called an arc,

ok. Now, this arc, it is a simple arc, it is a simple arc if it does not cross itself, does not

cross itself, ok. However, the other case when C is simple is simple; that means, it does

not cross itself, but yet, except that the end points meet, that z of a is equal to z of b, ok,

then C is called a simple closed curve, a simple closed curve, then, the next definition,

ok. 



We have not said anything about how x dash and y dash, the derivatives of x and y with

respect to t behave, ok. So, the next definition is if x dash of t; that means, the derivative

of x with respect to t and y dash of t, are continuous, are continuous, the derivatives are

also continuous throughout, as t varies between a and b, then C is called a differentiable

arc, ok. We will take some examples a little later, so that this becomes clearer, ok. 

Now,  further  if  z  of  t  is  a  differentiable  arc  as  above,  is  a  differentiable  arc,

differentiable, is a differentiable arc, and further, further this quantity: magnitude of z

dash of t does not go to 0 anywhere, anywhere in t as t varies from a to b, this quantity

never goes to 0, then the tangent x dash t plus iy dash t refers to the tangent. Then the

tangent turns continuously, turns continuously, and such an arc is called smooth, ok, such

an arc is called, such an arc, such an arc is called a smooth arc, a smooth arc, ok. Smooth

arc will be very commonly you know will come across it very commonly in our course,

ok. 

So, z dash t magnitude going to 0 is a rare case, it is kind of a pathological degenerate

case. So, it rarely happens. So, we will be dealing mostly with smooth arcs, ok. Further,

ok, the next definition is a contour, ok. So, you will see how the smooth arc features in a

contour. A contour is a piecewise smooth arc, piecewise, so most useful part of the set of

definitions. A contour is a piecewise smooth arc, ok. 

So, just  to give you, ok,  let  me finish this,  consisting of a finite  number,  of a finite

number of smooth arcs, of smooth arcs joined end to end, joined end to end, ok. Then,

what happens is, z dash of t, hence z dash of t becomes piecewise continuous, piecewise

continuous, ok. So, we will take a look at this in the next page. 
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So, if I have a contour which is made up of smooth arcs joined end to end, ok. So, these

portions  are  smooth  arcs,  these  are  smooth  arcs,  ok.  So,  that  the  tangent  turns

continuously,  tangent  turns  continuously  on  them,  here  also  the  tangent  turns

continuously, the tangent turns continuously. Whereas, at these kinks, the derivatives z

dash t will take jumps, ok. 

So, z dash of t is now piecewise continuous, it is continuous on these smooth arcs, but at

these kinks z dash t is piecewise continuous. It takes a jump, ok. Further, to that contour

definition, when the two endpoints, when the two endpoints, the two endpoints, ok. It so

happens that z of a is equal to z of b and the two endpoints meet then, we have what is

called a simple closed contour, ok.

So, this is another contour we will come across, ok. You will come across this quite a bit

and I will use this acronym, I will use SCC, will stand for Simple Closed Contour. I will

not expand it all the time, ok. So, let us take now an example, let us take an example, ok.

Suppose I have z, it is parameterized through x alone, ok, so I have x plus i x, when 0

less than equal to x less than equal to 1 and it is equal to x plus i, when one less than

equal to x less than equal to 2, ok. 

So, how does this thing look in the complex plane? I have 1 here, I have 2 here, this is

real axis, this is the imaginary axis, ok. Now, z my curve is, I am sorry, why did I write 2

here. So, it looks like x plus ix, ok, this is x plus ix, so y is equal to x, ok. 



And then it happens till 1, happens for values x between 0 and 1, and between 1 and 2,

the imaginary part remains constant and we get this, ok. So, this is the example of a

simple contour. So, this part is differentiable it is a smooth arc, this part is differentiable,

it is a smooth arc and you have joined them end to end, it is a simple contour, ok.

So, we will continue with these ideas in the next lecture. I will close here.

Thank you.


