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Similarity Solution- Energy

After doing the similarity, now for the momentum and we have shown that  how the

profiles should actually vary. Now let us take the energy equation now.
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Again, the boundary layer version, see here let us take the case where delta is greater

than delta T and T naught is equal to constant T naught is a wall temperature. This is how

the profiles are developing the 2 profiles. This is the momentum, this is the thermal. This

is delta, this is delta T. That is the premise.

Now, we define the rest of the definitions are already done. The new kid in the block is

basically  your temperature.  That we take as T minus T naught  divided by T infinity

minus T naught and we already know that u by u infinity is equal to f prime eta and v is

equal to half u prime gamma by x into n f prime minus f this we already know. That is v

this is u this is your corresponding eta. These are the 3 principal variables that we had

earlier also.



Now, let us look at let us go through the motions once again. This temperature this non-

dimensional temperature is nothing but the local temperature minus, whatever is a wall

temperature,  this  is  the  free  stream  temperature  this  T  infinity  and  this  is  the

corresponding wall  temperature.  This  is  the maximum temperature  that  is  there.  The

theta  will  be bounded it  should be lower than one.  On the other hand,  and this  is  a

constant wall temperature case; that means, the substrate is basically not changing it is

temperature along the length. Let us now based on this.
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Let us do the next set; that means, let us establish the rules once again. Dt by dx dt eta by

dx is equal to T infinity minus T naught into theta prime minus half eta by x. Dt by dy

these are once again simple math now we put all these things together in the in the main

energy equation. That will give u infinity f prime.

It is advisable that if you practice the math once at home or whenever you are studying

this course online. That you can get an idea that how to solve this equation. Make sure

that there are no errors as such alpha by gamma eta double prime plus half f theta prime

is equal to 0. This leads to the final form f theta prime into prandtl number is equal to 0.

That is the expression that we get ultimately. After doing all these things. That will be the

energy equation.
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Now, for the case for prandtl number is equal to 1; that means, delta is equal to delta T.

This equation will become theta double prime into half f theta prime is equal to 0. This is

very similar to the velocity profile the velocity profile now with respect to with respect to

theta this equation is linear. Unlike in the case of velocity with respect to f, it was not

linear this is linear with respect to theta. Of course, the main caveat comes from the fact

that you do not know f; that means, you still need to solve the momentum equation in

order to make any guess.

That is why this f becomes very important which I kept aside and I did not show. This f.
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Therefore, becomes very important because this is a solution for this is the f and how it

actually varies with theta now how it varies with eta. Based on this if you look at it. Here

the f comes directly into the picture. You still need to know that what is a variation of f

because that is the solution that you are going to use here and if you want to solve it in a

very coupled fashion.

Still the difficulty you cannot get rid these 2 equations are coupled; that means, you need

to solve the momentum to get an idea of the other energy equation. In this case also the

problem remains, but this is also nod as you can see because theta is now a function of

eta only and you still require the solution for f and whether at the generalized expression

involves prandtl number? Of course, if prandtl number is equal to 1 this is the expression

that you get those 2 standard expressions that you get.

Now, let us look at the generalized form. D theta prime by theta prime is equal to minus

half f prandtl number. This is the most general form got it? Or theta prime eta theta 0

exponential half prandtl number 0 to eta f beta. That is the dummy variable or theta eta is

equal to theta prime 0. These are the dummy variables that we are integrating it. This is

basically the slope of temperature at wall eta is equal to 0. That is the slope at the wall

because theta prime is once again the same thing it is dt by dy essentially. The slope

evaluated at the wall that is required for what because it is required for the heat transfer

coefficient.



Similarly, theta infinity is equal to 1 as eta progresses to infinity because that is the temp

that is the limit at which the temperature approaches the freestream. That is the that is the

2 expressions. Now, if you work out let us move to the next.
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Theta 0 will be equal to 1 by 0 to infinity exponential half prandtl number 0 to gamma f

beta d beta and theta eta will be equal to that is the generalized expression for theta.

These are the 2 expressions that you get. As we know that h from our scaling argument

we already knew that h is nothing but 2 x Reynolds number to the power of half. If we

cast it in terms of x theta into 0 theta prime equal to 0. Similarly, your Nusselt number

was h x by k which is equal to this is the local Nusselt number Reynolds number to the

power of half. This part is a function of your prandtl number this is what we said. There

is no clear-cut way of solving this.

But there are approximate solutions that are given for example, pohlhausen found that if

prandtl number is greater than point 5 he actually solved it. Theta 0 is actually equal to

0.332  into  prandtl  number  1  third.  Therefore,  the  Nusselt  number  expression  then

becomes 0.332 prandtl number 1third Reynolds number to the power of half. This is the

same form that we got. This part we got it through scaling already this is the form that

we got because of that because of the slope.



This is valid pohlhausens method was valid for prandtl number greater than 0.5. That is

true because we say that our delta is greater than delta T, all these things that we did.

This increase correctly with our scaling argument as well. There is no problem with that.

Now on the other hand another scope.
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That if prandtl number is less than 0.5 or the cases where prandtl number approaches 0.

We already know that delta is become smaller than delta T. Correct becomes smaller than

delta T.

Your  expression  becomes  this  or  in  other  words  theta  double  prime  by theta  prime

becomes equal to prandtl number into f by 2 or in other words d by d eta theta double

prime by theta prime minus prandtl number by 2 into f prime. Here, the interesting part

that we get is that. We have basically differentiated this guy with respect to eta here we

can see this f prime is equal to 1 because of the thinness of the velocity boundary layer

for all practical purposes your f prime is equal to 1 correct.

Because of that reason this becomes d by d eta theta double prime by theta prime is equal

to minus prandtl number by 2. You can integrate directly. In other words, you get your

theta and eta becomes equal to an error function eta by 2 prandtl number to the power of

half. This makes you evaluate theta as 0 is equal to prandtl number pi to the power of

half.



Based on these 2 expressions now, you can get your Nusselt number will be equal to

which  is  basically  hx  by  k  is  given  by  0.564  prandtl  number  to  the  power  of  half

Reynolds number to the power of half as prandtl number approaches 0. This also agrees

with our scaling argument this part agrees with our scaling argument. What part is that

we have plugged in? Is this 0.564.

Let us recapitulate that recall the steps where pandtl number is less than 0.5 or prandtl

number approaches 0. Your delta is much less than delta T because, delta is much much

less than delta T it means that it is a thin boundary layer. What we have done is that we

have taken the same expression we have just differentiated it with respect to eta as soon

as you differentiate with respect to eta, f becomes now f prime correct. As the f becomes

f prime now we know that f prime is equal to 1 because for all practical purposes we are

outside the velocity boundary layer.

Because the velocity boundary layer is very thin. In other words, it offers that you can

integrate this expression directly because, previously we had f. There was a requirement

that you needed to know what f is you can integrate here directly as you integrate you get

an error function for theta and if you evaluate the slope.

Because theta prime 0 is nothing but the slope which is required for evaluating h or

Nusselt number that becomes prandtl number by pi to the power of half. Once again, this

particular parameter becomes 0.564 whereas, we retain the functional form as prandtl

number half Reynolds number to the power of half. This is perfect that makes sense and

that is the kind of obvious thing that we get out of this exercise.

We have divided the problem into 2 once again in the same way that we did the scaling.

Greater the thermal boundary layer greater than velocity boundary layer or less than the

velocity boundary layer. In both ways one was given by pohl housen where he found that

it obeys with our scaling argument the other one can be more integrated easily and we

found that that is given by the error function and we have evaluated and found that our

scaling argument is exact.

This offers us now, some people what they did was after this like for example, churchill

correlation.
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They provided 1 composite correlations for the whole thing. Of course, these correlations

are only useful for engineers who want to you know quickly find something. 1 plus that

is called churchill correlation churchill correlation. There is like a composite correlation.

That is valid across a large scale of prandtl number and Reynolds number. This this is

basically data fits complicated data fits. While retaining the you know the variation of

this  because that  comes from a functional  analysis.  The rest  are  all  kind of you put

together all the data and you maintain this variation and then you do a curve fit and find

out the leading order coefficient. That is what has been done before we wrap up this

similarity transformation let us put a small discussion. What we said that we will do see

the nature of this v; that means, the vertical velocity or the y component of the velocity.

V by u infinity scales as Reynolds number to the power of minus half. As eta goes to

infinity you can see that this becomes equal to this.

Now, you can see that this is imperfect because of the simple reason that it is never 0.

Because, whatever is the value of Reynolds number it may be a small quantity, but it

existsm it  is  imperfect.  Imperfect  to  begin  with,  but;  however,  as  we can  see when

Reynolds  number  goes  up  v  by  u  infinity  comes  down.  Very  easy  to  see  from this

expression. This particular boundary layer assumption, what we said earlier is valid for

very thin bills only.



Because you want  this  v by u infinity  factor  to  be very small  because  your  vertical

component  of  the  it  has  to  disappear.  Otherwise  you  have  a  problem that  only  can

become small when your Reynolds number becomes very high and as we said earlier that

your Reynolds number becoming very high implies that your delta is very small that we

already said earlier.

More slender the boundary layer is more perfect the boundary layer solution becomes.

That is a very important point that you should try to mention maintain in your head. That

slenderness of boundary layer is of paramount importance and this becomes a solution

becomes more and more perfect and more and more exact. As you actually move to a

very high Reynolds number flow higher; that means, if you have a very low Reynolds

number these solutions will be kind of imperfect.

We have covered a lot of materials in which we have shown very clearly that we are in a

situation  that  we have  been able  to  able  to  cast.  That  using  similarity  variables  the

similarity transform was correct and we are able to show that both the heat transfer and

the momentum boundary layers can be exactly evaluated and we have put forward those

terms like 0.32, 0.56 for these are the prefix coefficients that sits in front and somehow,

we have been able to say that what will be the values of this heat transfer coefficient.

Using the methodology as has been detailed out in this particular case.

However, there is 1 problem, the problem lies that in these cases you have been able to

find out the similarity transformation. Is there a better way of you know basically doing

these problems? Which is somewhere in between a scaling analysis and the full exact

solution of course, you can do a full-fledged numerical simulation of the of the flat plate

boundary layer and you can find out that how the flat plate boundary layer actually the

exact values of this without resorting to the boundary layer assumption, but that would

be like that would carry no sense. Because, you would not be able to get these physical

arguments coming out of it.

But  in  complicated  problem  say  for  example,  if  you  want  to  do  it  over  a  very

complicated geometry you have to resort to either experiments or numerical simulations.

Your  scaling  can  give  you  some  idea,  but  it  cannot  be  used  for  the  full-fledged

understanding of the whole thing. But; however, is there a middle ground by which we



need not solve all these things because all we needed to do if I put it correctly was to find

out the values of 2 constants. One of those constant was 0.332.

The other constant was 0.564 correct actually 3 because to 0.332 1 was 0.564. These are

the 3 constants that we found out after doing all this exercise because the front portion

was  already  known  this  part  was  already  known.  All  we  need  found  out  was  that

something like that. Is there I mean people can argue that whether it is I mean advisable

to do all these things? Just to get those values of the constant or is there a better and

quicker  way  without  going  through  all  this  math,  without  going  through  all  these

integrations. Is there a better way by which we can get a constant value which is close to

these values? may not be exactly those values and we can live with it.

Say for example, instead of 0.332 if the constant value that we determined by some other

method we do not know what that method is, but if say by some other method we are

able to determine the value of that constant to be say 0.6, 0.36 only it will be off by a

factor of say 8 percent 10 percent if you can live with that; that means, it depends also on

your application. In many of the application 10 percent error is kind of its. If your 10

percent error is acceptable for your application.

Once again, the catch is that what it what your application is actually doing? What is the

sensitivity? What kind of accuracy do you want? But in most of the cases if you want

decent  accuracy  without  going  through  all  this  motion  of  you  know  evaluating

complicated  integrals  using shooting scheme to solve the equations.  Is  there a  better

way? By which you can use some of these some approximate techniques not necessarily

numerical techniques. Some approximate techniques by which you can find out that what

will be the values of this constant and maybe incur an error of something like 10 percent.

If that is acceptable, then there are several ways out.

Now, you might say flat  plate looks I can still  bear with this  much amount of math

because the math is honestly speaking not very complicated to begin with. It is just a lot

of transformations, but you are missing then you would be missing the point because the

main idea of introducing the scaling and this canonical problems was not that this is

something that you are going to do in your research or in your industry or wherever you

are. This is just to give you that whether you could use this methodology for analyzing

the problem which may be far more complex than this. If the problem is very complex



like for example,  as I say it flow over a turbine blade for example, they are doing a

similarity transformation and solving the whole thing maybe a mathematically a pretty

arduous task. It can be very complicated.

The scaling can still be done, but scaling would not give you the exact answer. You can

be off by approximately 1 order. All within our order you would be correct. It is good for

knowing the functional  variation those things are correct.  But the map can be pretty

onerous if  you actually  want to do the whole thing using a similarity  transformation

because you it may might a very, very complicated task. Can you devise some other way

by which you reduce the portion of your math and suggest some approximate techniques

which perhaps does not require that much this much complexity?

Because all we need to do is find out the values of 3 constants. Because you are not

really concerned about the whole temperature profile or the whole velocity profile you

are only interested in the slope of that particular profile at a point. So, if you do not care

that how do my profile look like and if I see that all these profiles looks kind of parabolic

in nature. If I can somehow incorporate the y variation as a parabolic curve or some other

polynomial  curve  and  then  find  out  the  value  of  that  constant  or  the  slope  at  that

particular point and if those values kind of fall within 5 to 10 percent error bar, your job

is done. That is what we are going to do next.

We are  going to  suggest  an  approximate  methodology  which  is  basically  called  the

integral solution. Integral solution is strictly approximate it is not a solution that that is

exactly like the similarity well similarity is also not fully exact, but within the boundary

layer  assumptions.  This  banks  on  the  fact  that  basically  your  variation  of  your  u

temperature  with y. If  you approximate  it  by a  curve without  doing the actual  math

without knowing the exact variation.

If  you  can  approximate  it  with  a  curve  fit  of  some  sort.  Which  validates  still  the

boundary  conditions  then  perhaps  you  can  have  a  better  way  of  you  know quickly

finding out what is the value of that slope going to be and if that value of the slope kind

of falls very close to your actual exact simulation. Maybe it is all worth your time to

invest in that particular direction.

That is what we are going to do in the next class. We are going to find out that by using

what  we  call  the  pohlhausen  von  karman  integral  method.  How  we  can  actually



approximate the u and the temperature profiles.  Using a some kind of an integration

technique and then try to see that how this constants this theta prime theta double prime

and f double prime. How do they look like; and whether they kind of fall close to the

exact solution that we did. See you next class. 


