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Last class we did that, when the thermal boundary layer was thicker than the momentum

boundary layer and that was a case when we discussed and showed that, how the Nusselt

number can be written as Reynolds number to the power of half and Prandtl number to

the power of half.

(Refer Slide Time: 00:31)

So, that we did. Now, this particular lecture, we will cover with we have thin thermal

boundary layer. Now, thin thermal boundary layer means, if you look at this particular

drawing,  so,  this  will  be your thermal  boundary layer. This will  be your momentum

boundary layer, right.

So, in this  particular  case,  obviously, the kinematic  viscosity is much larger than the

thermal diffusivity. So, this is the case or in other words, the Prandtl number should be

greater  than  1,  right.  So,  if  you  see  this  particular  situation,  you  will  realize  that

previously,  we  did  Prandtl  number  much  less  than  1.  This  is  Prandtl  number  much

greater than 1.



So, the thermal boundary layer is very restrictive; that means, it is a very slender thermal

boundary layer. Now, how to analyze a problem like this? Remember our solution now

will pertain to the thermal boundary layer only, right? It will not be pertaining to the

momentum  boundary  layer;  that  means,  we  have  to  do  whatever  we  do  inside  this

boundary layer essentially. That is the thermal boundary layer, right.

So, what will be the velocity scale here? So, if the velocity scale u, normally it is U

infinity correct, in the momentum boundary layer. This time, let us apply a scale. What

we have done is that, basically is like a linear interpolation of u infinity; that means, we

have we have divided u infinity by delta a multiplied it by delta T. So, this is a scale

factor. Because, inside this boundary layer, if you look at it carefully, here, because, the

boundary layer is very thin inside it, the velocity scale cannot be U infinity.

So, u cannot be equal to U infinity. This is a wrong statement inside delta T, right. But, u

proportional to U infinity into delta T by delta is the correct scaling because, we have

just done a numerical  interpolation;  that means,  we have divided U infinity  by delta

multiplied by delta T, right. So, that is what we have done to get a scaling factor for this.

Now, if we go back to your thermal energy equation, what do you have? These are the

terms, right? This particular set of equation remains the same. Now, let us take the first

term of this particular series U infinity delta T by delta into delta T by L.

So, that is the first term. By default, the second term will be the same; that is because,

now, v will no longer be equal to 0, as we saw in the case of a thick thermal boundary

layer.  Because,  in  the  thick  bound  thermal  boundary  layer,  we  were  outside  the

momentum boundary layer predominantly for most part of the analysis and because of

that, v actually has to be equal to 0. Because outside the momentum boundary layer v is

should not have any existence.

So, that is what we showed. But, now here, we are within the thermal boundary layer. So,

because we are within the thermal boundary layer, this particular term also should be of

the same order as this, from the continuity. So, this is basically proportional to delta T

square, got it? So, or in other words, we can say U infinity delta T by delta, delta T by L

proportional to alpha delta T square or delta T cube will be proportional to alpha delta T

by L delta divided by delta T into U infinity got it?



So, that will be the nature of the equation. So, let us go to the next page and see what

does this mean or in other words, delta T cube will be equal to alpha into L into delta

divided by U infinity which leads basically to alpha L by U infinity into L into Reynolds

number to the power of minus half.

(Refer Slide Time: 05:10)

We are what we have done we are substituted delta is, Reynolds number to the power of

minus half.

This, we already know from the momentum equation. They are back substituting it here,

alright. Or in other words, delta T cube will be equal to Reynolds number to the power of

3 by 2 L cube Prandtl number to the power of minus 1 or delta T will be proportional to

L Prandtl number to the power of minus 1 3rd Reynolds number to the power of minus

half. So, that is the expression for delta T again, very similar to the expression of delta.

Recall  once  again,  delta  was  always  the  same  here.  Previously,  the  Prandtl  number

dependence  was  minus  half.  This  time,  it  is  minus  1  3rd.  Now, delta  T by delta  is

proportional to Prandtl number to the power of minus 1 3rd, right. Just by dividing 1 by

the other, this is much less than 1 implying that Prandtl number is much greater than 1 or

Prandtl number to the power of 1 3rd is much greater than 1.

So,  for  Prandtl  number  much greater  than  1,  delta  T or  the  thermal  boundary  layer

thickness scales as only for this. Now, once again, this factor as we said earlier, this is a



scaling argument. So, that factor that sits in front of it is still basically unknown. For that,

we require  a  proper  full-fledged solution of the entire  equation.  So,  similarly, as  we

know, the heat transfer coefficient was our primary goal of over here, right.

So, that will be given by K by L Prandtl number to the power of 1 3rd Reynolds number

to the power of half or Nusselt number can be written as Prandtl number to the power of

1 3rd Reynolds number to the power of half. Both cases, Prandtl number is much greater

than 1. Usually, it is seen that, this particular form of the correlation is valid till about

Prandtl  number equal to 1.  So,  it  is  almost  valid and Prandtl  number greater  than 1

normal fluids will be for example, water this is got a Prandtl number of around 6 air has

got a Prandtl number close to 1. It is about 0.7 actually, ok.

So, as you can see, most of the common fluids that you will encounter will fall under the

Prandtl number greater than 1 category. As I said liquid metals and other things will fall

under Prandtl number much less than 1 category like oils and liquid metals. So, using

this scaling argument, now, we have got 4 major quantities right, one is your Nusselt

number and h, this combination alright.

One is basically your skin friction coefficient C f, the tau wall shear stress. That was one

other interesting parameter that we found out and an estimate of delta and delta t this

combination right. So, these are the 4 major things that we have unearths out of these

analysis using nothing but scaling arguments using nothing but scaling arguments who

are able to isolate the effects of these 4 quantities right here.

So, that makes it an interesting problem that now we know that how for example, the

flow the shear stress the Nusselt number all these things varies as a function of Reynolds

number and Prandtl number right. So, as I said earlier that there is a flow dependence

because this is convective heat transfer there is a flow dependence of on everything. So,

here  the  flow  dependence  comes  through  the  Reynolds  number  right  the  property

dependence  comes  through  the  Prandtl  number  correct.  So,  these  are  the  2  major

parameters that you need to know in order to identify what will be your heat transfer

coefficient right ok.

But even then so, this gives you a nice back up the envelope calculation; that means,

once your Reynolds number increases your Prandtl number should your Nusselt number

should increase I mean those kind of things you can infer from this relation right, but if



somebody asked you for an exact value of your Nusselt number, for that you need to

pursue this the more formal quantitative analysis which we are going to do next, but the

argument from scaling comes from the fact that there are several things that we found

that  delta  by L.  As we found,  if  you look at  this  particular  relationship  is  Reynolds

number to the power of minus half, right? That is the expression that you already saw

(Refer Slide Time: 10:40)

So, if I try to plot this particular thing that not plot, but basically see the dependence right

Reynolds number to the power of minus half. So, that is the relationship that we have

initially right. So, this as I say, it is nothing but the slenderness ratio so; that means, if

this is the boundary layer that is growing right, this is delta this is L right L or x right..

So, delta by L is essentially like a; slenderness right; obviously, we know that delta is

much less than L right.  So, it  is like a slenderness ratio correct  so; that means, how

slender is this boundary layer compared to the overall dimension of the plate right now

as you can see, so, delta by L less then Reynolds number to the power of half right. So,

as Reynolds number goes up quite a bit.

The ratio between delta and the delta by l actually becomes a very small number right

you can just plug in some values right put Reynolds number equal to 10 thousand put

Reynolds number equal to 10 to the power of 6. As you see, as we progressively increase

the Reynolds number, what will happen is that, this delta by L ratio becomes smaller and

smaller or in other words what it means is that the boundary layer the slenderness ratio



actually  increases  in  a  way  right;  that  means,  delta  becomes  much  smaller  than  L

progressively right.

So; that means, when you actually have a large Reynolds number flow your boundary

layer thickness is very small compared to the overall dimension of your plate correct that

is  an  important  argument  over  here  because,  that  that  we  will  see  is  of  paramount

importance when you apply the boundary layer equations. Because, when we can apply

the boundary layer equation, recall the boundary layer equations. We are able to apply

when we say it that this is much greater than that right. When we dealt with the viscous

terms correct that is because, we said that the slope in the y direction that is a transverse

direction has got a very high value compared to the variation in the x direction; it is only

possible when delta is a very small number.

So,  ideally  this  solution  becomes  more  and more  accurate  as  your  delta  goes  down

compared to L right. So, that is a fundamental importance over here if you are dealing

with a very low Reynolds number flow in which that delta becomes comparable with L

you strictly  cannot apply this boundary layer equations.  So, it  becomes progressively

more  and  more  approaches  the  more  and more  you  know exact  limit  as  your  delta

progressively becomes small got it. So, that is of high importance now. 

Also, let us see that we have said let us look at the physical insights that are coming out

of this. So, delta T, we said that it is basically Prandtl number to the power of some m if I

have to write it properly right, not delta T. Let us put Nusselt number right or the heat

transfer coefficient whatever you call it right it is some Prandtl number to the power n

Reynolds number to the power n right.

Now, as we increase the Reynolds number right and we also said that h is proportional to

L over delta T. Do you recall that particular argument that h is always proportional to L

over delta T right? So, that means,  as we increase the Reynolds number right as we

increase the Reynolds number, what happens to your delta T? The delta T goes down

right? The delta T goes down, the thermal boundary layer goes down. You just look at the

expression that I wrote in the previous slide.

You look at this any one of these expressions you can see that delta t right as we increase

the Reynolds number goes down right it goes down because this is inverse dependence

right. So, it goes down. So, that would mean that your boundary layer becomes very



small very slender and since h is inversely related to delta t h actually shoots up does it

make sense yes it does that is because if your thermal boundary layer thickness is small

the slope; obviously, will be larger..

Let’s take these 2 examples is one thermal boundary layer this is say another thermal

boundary layer let us call this delta 1 T 1. Let us call this delta T 2 2 situations alright.

Now, the temperature from t naught to T infinity that remains the same. So, basically you

are having a variation from T naught minus T infinity or T infinity minus T naught over a

distance of delta T 1 the same variation you are now having over a distance of delta T 2

right.

So, naturally, if you from common sense you can see the d t by d y type of term alright

which determines what is the slope right, at the surface of the plate.  So, this will be

naturally, whichever  one has got a lower delta  t  that  slope will  be higher right.  The

profile will show a sharper slope because; it has to change within a shorter distance.

So, the slope has to be higher, right delta T by delta y. So, it has to have a higher slope

right. So, because it has a higher slope; that means, the slenderness of the boundary layer

actually leads to a higher slope in the temperature right. Since it leads to a higher slope in

the temperature right, the h the heat transfer coefficient has to be more high, alright?

That is straightforward,  reason, right? Because the original  definition of heat transfer

coefficient if you recall it was K dT by d y divided by delta T right.

So, the same delta T is varying. Now, over 2 distances and if delta T 1 is it is less than

delta T 2; obviously, the slope corresponding to delta T 1 will be more. So, naturally, if

the slope is more h is high; that means, when we increase the Reynolds number, we

decrease delta T, as we decrease delta T we increase the slope at the wall, which leads to

an increase in h or the heat transfer coefficient and the Nusselt number. So, it makes

perfect sense.

So,  whatever  scaling  that  we did  actually  make sense,  right.  That  at  high  Reynolds

number flow the boundary layer is thin because it is thin the thermal gradient is high.

Because the thermal gradient is high at the wall, the h or the Nusselt number is more,

progressively as we increase the Reynolds number. But remember the dependence is not

a linear dependence it  is actually  a root over dependence right.  So, it  is not a linear



dependence that well if I increase in Reynolds number by 100, that will change the heat

transfer coefficient by a same amount, it is not like that.

So, it has got that root over dependence. Similarly, when you look at the Prandtl number

situation; that means, the Prandtl number either it is half or one third, in any case it is a

positive dependence on the Prandtl number right. So, if the Prandtl number goes up, we

can  see  readily  that  there  is  an  increase  in  the  heat  transfer  coefficient,  right.  In  2

different ways obviously; that means, depending on which boundary layer, which factor

is more important; that means, the Prandtl number is greater than 1 or less than 1 we

have a dependence in a certain way on the Prandtl number, right.

So, that is the property part that is where the property part comes out comes into the

picture right. So, in this way, we now have a heuristic understanding, right? That from

the scaling argument all these things makes perfect sense. Boundary layer has to be thin,

the thermal boundary layer can be thicker it can be thinner, but essentially there is a

scaling between the thermal boundary layer and the momentum boundary layer usually

happens through the Prandtl number value, right? And we have seen that y where the

boundary layer assumption should hold; that means, the delta by L has to be a very small

number. And that is automatically satisfied, as we increase the Reynolds number more

and more right, the slenderness part and we have also seen that, how this will actually

slenderness will actually lead to an increase in the heat wall heat flux.

So, based on this, we finish the scaling argument for this external flow part right. So,

some points to recap for the external flow part is that across momentum and thermal

boundary layer, there is for a flat plate at least there is no pressure gradient within the

within the momentum boundary layer right..

Let us get this. Because, the flow outside is oil arian and we argued that that flow field or

that pressure field is actually imposed inside the boundary layer.

Because, the flow outside does not have any variation with respect to x or y it is basically

uniform flow field. There is no pressure gradient that exists, within the boundary there.

That makes our job a whole lot simpler right? V that is, the velocity in the y direction

within the boundary layer is not 0. Contrary to some, you know, some misconceptions

that you might have it is not 0. It is a small number definitely, but it is not 0. And that we



have established again and again throughout the course of these scaling arguments. That

it is not a 0 number, right.

So, never be under the under the misconception that v within the boundary layer is a very

small; I mean it is 0. It is a small quantity no doubt about it. But v velocity outside the

boundary layer should be equal to 0, right? That is how we analyzed the thick thermal

boundary layer problem, got it? Now, since now we have established that, this is the

nature of v. So, that is how we should vary, inside and outside the thermal boundary

layer. We will come we will show that the boundary layer equations honestly speaking

does not satisfy this criteria that v is equal to 0 outside the boundary layer.

So,  that  is  a  problem which you will  address in  the next  few lectures,  but  v for all

practical purposes outside the boundary layer should be equal to 0, right. And this delta is

basically  an arbitrarily  fixed quantity;  ideally  delta  value should be equal to infinity,

because the boundary layer normally should stretch right up to infinity because if you are

looking at how the u velocity goes to the free stream value is an asymptotic variation. So,

it  should  actually  be  become  equal  to  U  infinity  at  you  know  y  equal  to  infinity

essentially, right.

But that is not the, I mean for all practical purposes we cut it off at say 99 percent of U

infinity that we take as delta you can take it as 0.999 you can increase the number of

decimals as you want. For most engineering purposes 99.999 percent is good enough or

99 percent is good enough right for 0.9 is good enough of. So, these are some of the

takeaway points from the scaling argument.

So, remember when you do a scaling argument, we have done an order of magnitude

analysis, we have not made a concrete you know what we call a full-fledged solution of

the whole problem; that means, we are still missing certain things, but we are able to

capture the essential physics of the problem that what is the flow as we started that h

should depend on flow convective heat transfer is a different problem it does not depend

on the properties you cannot have a farm now you can see why we cannot have a firm

number for each, right or C f skin friction coefficient right.

Because, these are the 2 things we say that the engineers want, right, the drag and the

Nusselt number or the heat transfer coefficient. You cannot have it because you need to

know what is your Reynolds number your Prandtl number this kind of situations right.



So, there is no one no fixed answer to this particular question. Even if you specify the

system for us and of course, here we have taken that the flow is fully laminar there is no

separation.  So,  we  have  not  considered  any  separation  of  the  flow.  So,  that  will

complicate  issues  a  little  bit  more.  Remember,  the  boundary  layer  assumption  holds

away from the leading edge of the plate right. So, we are at a certain reasonable distance

away from the leading edge.

So, that we can you know discount for the edge effect also. Remember, one other thing

this is an established solution; that means, it is a steady kind of a solution over here right.

So,  initially  when  the  flow  encounters  the  plate  there  will  be  a  lot  of  other  flow

complications which you are not covering it over here, before the flow stabilizes to a

steady state configuration. So, the flow will this is after the flow has kind of you know

attained some kind of a steady state that is what we have d1 over here another thing to

note if you look at the thing before we go to the next one that delta.

Obviously scales as x to the power of half; that means, your boundary layer thickness

increases as you march along the plate length right. And it marches as x to the power of

half. So, that is why whatever we drew earlier that this kind of a profile right. And not

this kind of a profile, that is wrong. We have drawn this kind of a profile that is mainly

because of this. How do you establish this because delta by x is proportional to Reynolds

number x to the power of minus half, if you now open up the terms you will get that this

will be root over delta x.

So, that is what you would get. So, this is very important that shows that is boundary

layer monotonically increases as we increase the as we march along the plate length. So,

this is another important parameter, and same thing happens for the thermal boundary

layer also right, it scales as Reynolds number to the power of x to the power of half. So,

in both cases the thermal boundary layer and the momentum boundary layer grows with

increasing distance right; that means, the gradient becomes shallower and shallower in a

way. It becomes shallower and shallower as we march on right with respect to x, got it?

So, we finish this lecture over here, we have given a lot of insights into what happens,

now next we will take up the portion in which we will try to see that if we now try to

solve this equation in a proper way, and then do the results look in different. Or what we

have done is it correct or not it made common sense; obviously, it explained a few things



of course, it matches with experimental data as well this kind of variations like delta x

and other  things.  But  let  us  see that  whether  we can get  a  more concrete  kind of  a

solution using some analytical tools as a matter of fact.

Thank you.


