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In the last class, we did the x momentum equation reduced it in the boundary layer by

assuming that the delta the thickness over which the over the bound; that is, the thickness

of the boundary layer and the velocity  varies over that small  thickness  is  much less

compared to the variation of velocity in the in the x direction essentially, right.

So, that was the main conjecture, where we said that this variation is a lot sharper lot

higher compared to the variation in the along the length of the plate. That was the main

understand right.
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So, the y momentum equation if you write it is d v by d y u y square. So, that was a y

momentum equation. Now let us once again substitute the individual terms, right. U we

already  established  what  is  the  length  what  is  the  order  or  the  scale  of  v  from the

continuity.

So, it is u square delta by L square, that is the first term, then u square delta square by L

square delta, which is once again gives you the same thing. So, once again the magnitude



of the forward terms are the same, all right. This gives you now pressure divided by rho

delta that is; the second term the third term basically over here will be the gamma u

infinity, u infinity delta by L delta square.

So, that will be the that will be the term, that we will have this is the final term this term

we;  obviously,  know  is  going  to  be  small,  right.  Once  again  because  of  the  same

argument that we made in the last class. So, this goes down. So, ultimately what we have

is this particular term boils down to u infinity L delta, right.

So now we come to a crucial juncture over here. So, your d p by d y as you can see is

proportional to something like something like a mu u infinity divided by L delta, right.

That is what we are getting because if the pressure term has to be proportional to this this

is what if all the terms has to be equally important to the equation right; that means, their

orders have to be comparable, right. That is the basic logic if one term is that is how we

got read of this remember. That this term is way smaller than the other terms right. So, it

is almost like you have a lot of things one few things are. So, small that you can basically

discard it.

Similarly, d p by d x on the other hand if you look at it d p by d x, is basically given by u

infinity by delta square this comes from the previous definition, right. Now what we can

do is that if you write d p, how is it given by d p by d x into d x plus d p by d y into d y,

correct? You can write it like that. So, or in other words d p by d x is equal to d p by d x

like this plus d p by d y into d y by d x, correct? You can write it like that also. Now if

you take I am trying to do it in one sheet. 

So, that you can get a better feel. So, d p by d x divided by d p by d y if we do this, what

will happen? You will get mu u infinity delta square divided by mu u infinity L delta

right. So, this will give you L delta by delta square, right, which is basically L by delta

which is much much greater than one., Right. Or in other words what we are saying is

that d p by d x is much much greater than d p by d y, right. Or in other words of other

words your d p by d x can be written like the ordinary differential of pressure, got it?

Fine.

So, this is quite clear now that using this y momentum equation, we have shown that

basically d p by d y is a very small quantity compared to d p by d x, right? And therefore,

you can write d p by d x as an ordinary differential,  right? Cool up to this particular



point. Now returning to the x momentum equation to x momentum equation, what we

have is that u infinity square by L is therefore, equal to 1 over rho d p by d x.
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And these are the other terms and delta square, right. These are the 3 terms that you have

as of now. Now recall at this particular point that this is a flat plate, correct? And d p by d

y is practically equal to 0, that is what we proved right. So, this leads to that p is a

function of f x only that is, how we could write it as d p by d x that is the ordinary

differential. So, let us consider if this is the case; that means, pressure anywhere in the

flow field will be only a function of x, it would not be a function of y, right..

Based on this for the so free stream pressure free stream pressure at y equal to infinity,

right will be the same will be same at y equal to y greater than 0 greater than delta, for all

x you got it? So, across anywhere in the boundary layer at any distance from the leading

edge, right. Your pressure within the boundary layer will be the same as whatever is a

pressure that is outside the boundary layer.

That means as if the outside boundary layer pressure is imposed within the boundary

layer, got it? That is what it means because, there is no variation with respect to y there is

no variation  with respect  to  y correct?  So, the whatever  is  the free stream pressure;

however, the free stream pressure varies. That is what is imposed within the boundary

layer correct. But the free stream pressure unfortunately in the case of a flat plate with a

uniform flow is basically equal to constant, right..



So, that means, the pressure within the boundary layer will be also constant right. So, in

other words it says that d p infinity by d x is equal to 0, right. So, that means, your d p by

d x is also equal to 0. So, that means, inside the boundary layer in a flat plate there is no

pressure gradient,  right.  There is  no pressure gradient  in a flat  plate  remember  I  am

emphasizing on the word flat plate.

Do not try to apply this result to an incline plate and things like that, we will see what

that  is.  But  2  important  concepts  that  you are  taking out  from here  one  is  pressure

variation in the y direction is negligible. Second thing is that the free stream pressure is

imposed within the boundary layer. So, if  the free stream pressure varies with x, the

pressure within the boundary layer will also vary with x. In this case the free stream

pressure is constant, it does not vary with x. So, the pressure within the boundary layer

also does not vary with x, right.

So, based on these 2 therefore, we are left with only 2 terms. One is a convective term

which is u square by L. Remember, the 2 terms in the convective derivative a of the

convective acceleration at the same order write this u square by L. And that must be the

same as u infinity by delta square; which is the other term which is the viscous term on

the, right. Hand side of the equation right.

So, based on this you can readily get that your delta square will now become u L by in u

infinity, got it? If you just compare the order. So, therefore,  delta square can be also

written as mu L by rho u infinity. So, delta can be written as mu L by rho u infinity;

which is also nothing but Reynolds number with respect to L by this. So, delta by L is

varies as Reynolds number to the power of minus half. As you know the definition of

Reynolds number is what rho u rho u infinity in this particular case, rho u infinity into L

by mu right.

So, that is the definition of Reynolds number right. So, you can see that your delta by L

varies as Reynolds number to the power of minus half. So, that means, what is delta by L

delta by L is basically the ratio. You can also call a something like a slenderness ratio of

the boundary layer right; that means, delta by L should go up, right. As Reynolds number

if the Reynolds number goes up what happens? 1 over the Reynolds number it becomes.

So, you can see that once again this is given as Reynolds number to the power of minus

half right.



This is 1 over the Reynolds number right. So, if the Reynolds number becomes a very

big quantity. As you increase the Reynolds number what will happen? As you decrease

the Reynolds number what will happen? So, depending on that the slenderness ratio will

change. So, is live left as an exercise is a very small exercise, right. 

That you can guess and you can plot write, that as the Reynolds number increases, or the

Reynolds number decreases the slenderness ratio; that means, the ratio of the ratio of the

delta and L, what does this ratio vary? How does this ratio actually vary does it go up or

down? But as you can see that Reynolds number is actually a large number usually. We

are  dealing  with flows which is  much greater  than Reynolds  number is  much much

greater than 1, right. It is not a stucation flow, right. It is laminar, but still the Reynolds

number is high right.

So, based on that you can readily see this by delta. Say, the Reynolds number is say

thousand right. So, this will be like 1 over thousand root. So, as you can see this will

become a small number. So, our initial assumption that delta is much much smaller than

L is very justified. So, you can readily see and if the Reynolds number becomes a 10 to

the power of 6. This particular ratio will become if it is 10 to the power of 6. So, if this is

say this is say 100 that may be easier for you to understand. 

So, this will be 1 over 10, right. If the Reynolds number becomes equal to 10 to the

power of 6, what happens? What is 10 to the power of 6 the root of 10 to the power of 6.

So, once it becomes 10 to the root of 10 to the power of 6. So, you can see this delta by L

will become something say it is 10,000 it becomes right. So, as you can see this number

is even smaller, right.

So, that the difference between delta and L is substantial. So, the slenderness essentially

increases, right. As you go on increasing the Reynolds number. So, that is the takeaway

point that is coming out of this particular exercise, got it? Now for any if we just replace

L by any measurable any reasonable x, right..
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Which is greater than delta; that means, at some point you do not consider the full length.

You can also  show that  this  will  be  the  same.  This  will  be now given as  Reynolds

number based on that x location, not with respect to L anymore. This comes simply from

the  scaling  right.  So,  if  we  now know this  can  we  calculate  the  wall  shear  stress?

Because as we know as engineer our main aim was to find out the drag.

So, the wall shear stress in this particular case will be tau is equal to mu d u d y, which

basically is mu u infinity by delta, right. Delta we already know, that is L into Reynolds

number to the power of minus half. So, therefore, this gives tau as rho u infinity square

into Reynolds number to the power of minus half all, right. Skin friction coefficient if we

talk about, because some engineers will talk about skin friction coefficient, ç f that will

be equal to tau divided by half rho u infinity square, that will become Reynolds number

L to the power of minus half, got it?

So, all these things happened, without any detailed analysis. No detailed analysis. We did

not do any detailed analysis at all, right? Correct there is no detailed analysis there is no

real math that we solved. Yet, we found out what is a functional variation of c f, right. Or

what is the functional variation of tau. We know that tau now depends on the Reynolds

number in a certain way. As you increase or decrease the Reynolds number, tau actually

increases and decreases accordingly. So, these are all without any detailed analysis.



So, that is the powerful nature of the scaling that without doing any detailed math we are

able to identify the key functional groups over which the c f tau and all these things will

depend. We also know how the boundary layer thickness will depend compared to the

distance from the leading edge, right. But why didn’t we need to do a comprehensive

analysis simple reason is that we do not know what sits here these are all scales; that

means, within one order we are, correct? So, but there will be some coefficient some

number that will sit here right. So, in this some number can be say 5.2 into Reynolds

number of minus half, that may be the actual answer. But this 5.2 you can never get

through scaling arguments for this you need to solve it in details, right.

So, that is there lies the caveat, but you still know that what is the significance what is

the  functional  numbers  or  the  non-dimensional  parameters  over  which  skin  friction

coefficient should depend on. So, this is a good back up the envelope calculations that

one can do to easily get an answer to this particular question, got it? Some let us look at

the thermal boundary layer now.
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So, thermal boundary layer as we know it is like this. Once again looks something like

that, this is T naught this is T infinity this is your delta T as I said that delta T and delta

we still do not know the association.

But we know that delta T is basically the thermal boundary layer. And we know h is

nothing but minus k d T d y at y equal to 0 divided by T naught minus T infinity, right.



Or in other words this will become k some kind of a delta T by the thermal boundary

layer thickness divided by delta T. So, this will become k over delta T.

So, as we know that your heat transfer coefficient is proportional to the inverse of the

thermal boundary layer. Because k is a constant normally for all the applications. So, the

heat transfer coefficient is inversely proportional to the thermal boundary layer thickness.

So, as the thermal boundary layer thickness becomes very large, h becomes very small, if

the thermal boundary layer thickness is very small h becomes very large, right. So, this is

a h is therefore, equal to 1 over delta T.

So, that means, if we can evaluate what this delta T is going to be you can easily say

what will be the dependence of h. So, like we determine that delta is proportional to L to

the power of minus half that we did, right. Similarly, if we can established a similar thing

from for delta T; that means, the thermal boundary layer thickness we are done right. So,

if  we  can  establish  something  which  is  similar  to  this,  similar  to  this  needs  to  be

determined, right. Something similar to this needs to be determined, am I right? It is

clear from this particular point. So, let us write to the boundary layer form then once

again for the thermal boundary layer.
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So, it is what u d T by d x plus v d T by d y is equal to alpha delta square T by delta y

square. Once again, I have not included the axial gradient, simply because for the same

reasons as previously mentioned that this is the boundary layer form. So, delta T is much



much smaller than L, right. That was original form that we had same thing is valid for

delta T, we do not know that whether delta T is greater than delta or not, but at least we

know that it is much much smaller than L. So, we can neglect that particular gradient.

So, the convection terms therefore, can be written easily v delta T by delta that should be

proportional  to  alpha  delta  T by delta  T square  right.  So  now, we  need  to  develop

something on this delta T. What is this delta T? What it can be write? What will be the

expression for that, this is the order form, this is the scaling form of the energy equation,

right. As we once again see these 2 terms are of the same order. If you substitute for v

you will get the same order. Now there are 2 situations that are possible. Situation one,

when delta T is much much greater than delta. That is the first situation right; that means,

we have a thick thermal boundary layer, right relative to the velocity boundary layer

correct?

So, the situation is like this. This is your delta, I am drawing the other 1 by a dotted line

this is your delta T. So, that is what we have right. So now, you can see that in this

particular configuration, the velocity boundary layer is much much thinner compared to

the temperature boundary layer. So,  outside this in this  particular  zone,  you must be

equal to u infinity, right. Because it is already in that free stream region, right. And v

should be the same as u infinity into delta by L, whatever is the v the relationship of v is,

right. Now in this particular configuration if we write it now in this expression.

This particular expression what you will get is, u infinity into delta T by L, that is the

first term, right. The second term will be u infinity into delta T by L into delta by delta T,

it is proportional to alpha delta T by delta T square. Now in this particular expression

what you see is that this particular  term is; obviously, much much smaller than this,

because your delta by delta T what do you see, as delta by delta T expression. Delta T is

much much greater than delta that is what our initial assumption was, right?

So, therefore, delta by delta T must be much much less than one right. So, in if that is the

situation therefore, this term will be become will become negligible. Now how is that

that the velocity term, which we said that they are normally of equal magnitude becomes

negligible here. That is because your velocity boundary layer is very thin over here right.

So, outside the velocity boundary layer in most of the space, right. You are outside the

velocity boundary layer your scale of velocity u is u infinity right. So, therefore, there the



v velocity scale will be negligible. Because you are outside the velocity boundary layer.

And there is no free stream it is only a free stream horizontal component of the velocity

right. So, outside the boundary layer there your v velocity will be negligible. Because

you are outside the velocity boundary layer. Because the velocity boundary layer is very

thin.

So, there are 2 or 3 arguments over here. Your thermal boundary layer is way thicker

than your velocity boundary layer that is the first assumption, right. Because of that in

most part of the thermal boundary layer, right. You are outside the velocity boundary

layer, because you are analyzing a flow condition. Where the velocity boundary layer is

very thin compared to the thermal boundary layer right. So, in most part of the flow field,

inside the thermal boundary layer, remember. The analysis here is done for the thermal

boundary layer the velocity scale is almost like u infinity right.

And not  only that  because you are outside the velocity  boundary layer, right.  The v

component of the velocity will be negligible. So, there is no doubt that this is the correct

expression that we have got all, right. Now let us look go to the next page. Based on this

now what we have is alpha into delta T by delta T square is proportional to delta u delta

T by L..
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Or delta T square is proportional to alpha L by u infinity all right?



So, that is what we get over here. So, therefore, now we can do a little bit of jugglery this

leads to delta T square is proportional to Reynolds number to the power of minus half

alpha by gamma into L square, right. Or in other words, delta T is proportional to sorry

this  is  not  Reynolds  number  to  the  power  minus  1.  So,  delta  T will  be  equal  to  L

Reynolds number to the power of minus half into alpha by gamma raised to the power of

minus half.

Now, the key quantity over here is alpha by gamma, what is alpha by gamma? Alpha by

gamma is nothing but the inverse of the Prandtl number. Prandtl number is nothing but

gamma by alpha right. So, is basically a ratio of the momentum diffusivity divided by the

thermal diffusivity is a relative ratio that so, a Prandtl number greater than one means the

momentum diffuses much faster than the than the thermal diffusivity. Whereas, Prandtl

number less than 1, essentially means the opposite. So, in this particular case, what you

have is your delta T is your delta T is therefore, proportional to L Reynolds number to

the power of minus half Prandtl number to the power of minus half, clear?

So, as we can see this is very similar to your delta, delta was this no this is very similar

to your delta, except now this Prandtl number comes into the picture. If Prandtl number

is equal to one both the deltas are the same; that means, your thermal and momentum

boundary layers are exactly the same the overlap on the top of each other alright. So,

knowing one is equivalent to knowing the other, right.

But on the other hand, in this case we have found out an expression; which relates the

thermal boundary layer with the Reynolds number and with the Prandtl number of the

flow field Prandtl number is a property dependent parameter remember that. So, these

are the 2 important things and this is valid. For Prandtl number Prandtl number much

much greater than 1, right. Because your delta T was much much greater than delta,

right. Because your delta T was much much greater than delta, correct?

So, the Prandtl number is obviously much much greater than 1 or the rather I am sorry,

the Prandtl number sorry extremely sorry over here delta T is much much greater than

delta. So, Prandtl number to the power of minus half is much much greater than 1. So,

therefore, this leads to Prandtl number to the power of half is much much less than 1. So,

this  is  the  situation;  that  means,  where  the  thermal  diffusivity  is  greater  than  the



momentum  diffusivity,  right.  So,  that  means,  your  alpha  is  much  much  more  than

gamma, right. Because that is the inverse right.

So, alpha is much much greater than gamma. So, this is the situation in the case of liquid

metals, they show this behavior liquid, metals actually show whether thermal diffusivity

is much higher than the momentum diffusivity right. So, recall that h is proportional to k

over delta T, right. That was what we said. So, therefore, h therefore, becomes k by L

Reynolds number to the power of half Prandtl number to the power of half for Prandtl

number much much less than 1.

So, you can see the heat transfer coefficient can be easily worked out through this scaling

argument as a function of Reynolds number which is the flow. Remember, I said that the

heat transfer coefficient is a function of the flow and it is a function of the property. So,

Prandtl number is a function of the property Reynolds number is a function of the flow k

is also a function of the property of whatever fluid that you are dealing with. So, for

Prandtl number much much less than 1; that means, for liquid metal and similar such

families you have your h given in this particular form right.

Once again,  we do not  know what  sits  here,  that  is  still  a  question that  we need to

answer, that can be only answered when you actually solve the equation in a proper way

right. So, similarly before we go to the other case. Let us define something called Nusselt

number  right.  So,  Nusselt  number  as  you  may  be  familiar  with  is  nothing  but  the

convective heat transfer divided by the conductive heat transfer. Do not confuse it with

the butte number. So, it is basically h into delta T divided by k into delta T by L which is

nothing but h L by k.

So, as you can see therefore, go to the next slide. As you can see over here now that we

have found out what h is Nusselt number therefore, becomes let us not put the equality

over here.
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 Reynolds number to the power of half Prandtl number to the power of half for Prandtl

number much less than 1, you can see Nusselt number is one quantity that you are very

familiar with. So, heat transfer coefficient and Nusselt number are basically one in the

same. So, you can see that they are all functions of flow function of properties right. So,

we have looked into the case of a thick boundary layer. Next class what we are going to

do? We are going to look at the case of a thin thermal boundary layer. So, that will be the

topic for next class.

Thank you.


