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So, in this particular class, we are going to see about five problems in turbulence which

will give you an idea that how to solve different problems these are simple problems

which does not require you to memorize a whole lot of things ok, but ok. So, let us look

at the first problem.
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The first problem what does it say is that the water flows if you look at the ppt. So, the

water flows with a velocity of U infinity equal to 0.2 meter per second parallel to the

plane wall, ok. So, the following calculations refer to the position x equal to 6 meter

measured downstream from the leading edge the water properties can be evaluated at 20

degree Celsius.

So, is basically water which is flowing over a flat plate parallel to a plain wall this is

water U infinity is about 0.2 meter per second, calculations are carried at x equal to 6

meter, from the leading edge. So, this is the leading edge. So, water properties can be

evaluated at 20 degree Celsius. So, what we are trying to do is that we are trying to insert

a probe in the viscous sub layer to the position represented by y plus equal to 2.7, if you



recall the definition y plus equal to 2.7. Calculate the actual spacing y between the probe

and the wall. So, you have placed the probe at a distance which is given as y plus equal

to 2.7. We want to know the physical distance all right, we want to know the physical

distance and this probe is placed in the what we call the viscous sub layer the VSL, ok.

So, that is the first problem that what is the actual spacing.

Next part is calculate the boundary layer thickness and compare the value based on the

assumption that x is covered by turbulent boundary layer flow and calculate the heat

transfer coefficient which is averaged over the length x. So, this is the problem that we

are dealing with here. So, let us see how this problem can be solved.
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So, question one ok. So, we can first take the properties of water of water at 20 degree

Celsius. So, rho is 1 gram per cc cp is equal to 4.1 one eight kilo joules per kg k you

have to take care of the units whatever unit you use you have to just use them properly

this is the kinematic viscosity k is 0.59 watt per meter Kelvin and Prandtl number is

about 7.07 that is a Prandtl number for water. So, in order to calculate y, so, the first part

of the problem is to calculate y. So, we know y is given plus y plus into gamma tau wall

divided by rho raised to the power of minus half all right, this is the definition that we

know from the during the course of our last lectures.

So, you have to know what about this we already know this is 2.7, and we already know

the value of this all right it is given there. So, what will be the value of tau wall by rho ?



So, tau wall by rho therefore,  is given from our correlations  is 2.296 into U infinity

square  Reynolds  number  x  to  the  power  of  minus  one  fifth  in  this  particular  term

Reynolds number x is given as U infinity into x by gamma.

So, therefore, if you start substituting U infinity is about 20 centimeter. So, let us put it at

centimeter per second, 600 centimeter is the wall length. So, we are converting it into

one  particular  unit  and  gamma  is  basically  the  kinematic  viscosity  which  is  0.1

centimeters square and second on the top. So, this gives you about 1.2 into 10 to the

power of 6 which is basically a turbulent flow all right it is basically a turbulent flow. So,

therefore, your tau wall the rho is given as 0.0018 ok, if you convert all the terms U

infinity squared. So, therefore, tau wall rho raised to the power of half is about 0.4024

into 20 centimeter per second which is 0.849 centimeter per second.

So, therefore, your y is equal to y plus gamma tau wall by rho raised to the power of half.

So, this is actually given as 2.7 in to 0.01 centimeter square per second, second divided

by 0.849 centimeter. So, this gives you 0.3 millimeter. So, the physical distance y where

you have inserted the probe is about 0.3 mm which is about 300 microns. 100 micron is

the diameter of your hair, so, it is about 3 times the thickness of your hair where this

probe is inserted just to give you a feel.
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So, similarly now the boundary layer thickness which is delta ok, can be evaluated as this

is 0.37 if you recall Reynolds number x to the power of minus one fifth. So, this is 0.37



into 6 meter into 1.2 into 10 to the power of 6 raised to the power of minus one fifth, this

gives  you  about  13.5  centimeter.  So,  that  is  the  thickness.  So,  you  can  put  this  in

perspective the total thickness of this boundary layer is about 13.5 centimeter quite a bit.

Now, in the laminar region, so, if you calculate the laminar region for this same thing if

you recall it was 4.92 into 10 to the in into Reynolds number x to the power of minus

half. So, it is a much much stronger dependence so, 4.92 into 6 meter into 1.2 into 10 to

the power of 6 raised to the power of half. So, it is basically becomes 2 2.7 centimeter

because Reynolds number is in the denominator all right. So, it is as much big it is the

same number, but it has been raised to the power of half that is raised to the power of one

fifth. So, basically the boundary layer thickness blows up all right because it is a smaller

number in the denominator effectively.

So, you can compare one is 13.5, one is 2.7, ok. So, that is the extent that the laminar

boundary layer is much thinner boundary layer is much thinner then the real then the real

turbulent boundary layer. So, if you use the laminar boundary layer correlations you will

be way off that is the whole point that we are trying to make.

So, the Nusselt number on the other hand is given as Nusselt number is given as 0.0296

Prandtl number one third Reynolds number 4 by 5 .

So, Nusselt number x bar is 0.037 Prandtl number one third Reynolds number 4 by fifth

0.037 7.07 to the power of one third 1.2 into 10 to the power of 6 to the power of 4 by 5

this gives you about 5184 Prandtl number. What is your heat transfer coefficient h bar is

equal to Nusselt number x bar divided by k by x, all right. So, this gives you about 5184,

into 0.59 remember we calculated k earlier, divided by 1 over 6 meter this actually if you

take care of the units it would be 5 O 9 watt per meter square Kelvin, got it. So, that is 5

O 9 that is what you get from your from your relation.

So, this completes the first problem which shows that how to for example, use existing

correlations and find out these are not correlations per say, but these were problems that

we relations that we established earlier and now we are able to use it for solving a real

problem ok.
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So,  if  you  look  at  the  next  problem  now  so,  you  consider  the  heat  transfer  in  the

boundary layer from an isothermal wall to a constant temperature T stream all right the

leading laminar section of the boundary layer. So, it has got a laminar section and then it

has  got  a  turbulent  section  has  a  length  comparable  with  the  length  of  the  trailing

turbulent section. 

So, both are kind of comparable you cannot neglect one for the other consequently the

heat flux averaged over the entire wall length is influenced by both sections. So, our idea

is to derive a formula for the L averaged Nusselt number assuming that laminar turbulent

transition is located at a point x which is between x equal to 0 and x equal to L and where

x into U infinity divided by gamma is 3.5 into 10 to the power of 5, ok.

So, that is the problem. So, it has got a laminar section and it has got a turbulent section.

So, now, let us attack this problem.
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Question  2,  ok.  So,  the  definition  definition  of  L averaged  Nusselt  number  tells  us

Nusselt number 0 to L k into delta T. So, if you look at the problem now there is a section

in which it is kind of like this and then you have this particular thing. So, up to this is

basically the x transition that point and so, this part is your laminar and beyond this it is

basically turbulent all right, beyond this it is basically turbulent.

So, your q, 0 to L double prime 1 over L is basically a sum total from 0 to x transition

this is q laminar into dx plus 0 to L minus x t r q double prime turbulent into dx, ok. So,

in the laminar section when you write as q laminar for Prandtl number greater than 1 at

any point x, if you recall your old stuff it will be this is an isothermal plate, so, this is

0.332 k into delta T by x Prandtl number one third Reynolds number half, ok. So, hence

0 to x t r laminar  dx gives you 0.664 k delta T Prandtl  number one third,  Reynolds

number up to the transition is about half ok. So, for the turbulent section we do the same.
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Do the same for the turbulent section for turbulence section so, q turbulent double prime

x rho C p U infinity delta T Stanton number x, ok. So, now this particular expression if

you look at the different types of expressions for this ok, you have of course, there is the

Prandtl  two third  half  C f  x  thing  which  is  once  again  this  is  given as  0.0296 into

Reynolds to the power of minus one fifth is Prandtl if you recall this is basically Colburn

once again if  you recall  ok.  So,  this  is  the  not  this  whole thing,  but just  a  standard

number part ok. So, 0 to L minus x T r q turbulence dx is equal to 0.037 rho C p U

infinity delta T Prandtl number minus 2 third U infinity by gamma to the power of minus

one fifth, L minus x t r 4 by 5 ok.

So, in conclusion your Nusselt number from 0 to L is basically given as q 0 to L double

prime L by k into delta T which will be Prandtl one third 0.664 Reynolds transition to the

power of half plus 0.037 Reynolds number L minus Reynolds number x t r to the power

of 4 fifth, all right. So, this gives you the total expression for your Nusselt number.

So,  it  is  basically  an addition  of  two quantities  basically  one is  the under  Reynolds

number part one is the laminar part and one is the turbulence part. So, that is a very

simple way of and we have used two additional relationships one is the C f x which is

Prandtl  and one is basically  the Stanton number relationship which is from Colburns

analogy, all right.
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So, let us look at the next problem. This is this problem is even simpler. So, you can see

that the general relationship that exist between Reynolds number and Prandtl number is

given by this this we already did multiple times. So, it will be a nice thing to work it out

once again and show that the Colburn analogy also applies to the laminar section of the

boundary layer for an isothermal plate if the fluid has got a Prandtl number which is

greater than 0.5. So, far has been we have been doing it for turbulent flow only let us

look at it that whether Colburn analogy is also applicable for laminar flow.
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So, question 3 this is easy enough question. So, your Stanton number if you write it from

the definition is h x by rho C p into U infinity. So, if you do it h x divided by rho C p U

infinity x by k into k by x ok. So, this will be Nusselt number x into alpha by U infinity

into x which will be Nusselt number x into gamma by U infinity into x divided by alpha

by gamma. So, this will further lead to Nusselt number by Peclet number which will give

you Nusselt number divided by Reynolds number into Prandtl number it is very simple

math.  So, if you show it this is how this thing was done just starting from the basic

definition of your Stanton number.

So, the b part of the question. So, this is the a part ok. So, the Colburn analogy is 1 by C f

x is equal to 0.332 to establish the Colburn analogy for the laminar, let us write the C f x

term also for the for the laminar boundary layer where your Reynolds number x is given

as U infinity into x by gamma all right. So, the left side can be estimated of this Colburn

analogy can be estimated using this first form of the equation which is basically what we

did here, ok. So, this is the second ok. So, using equation – I and the N U x formula

formula greater for Prandtl number greater than 0.5 we get Stanton number x Prandtl

number  two third  is  equal  to  Nusselt  number  x Reynolds  number  x Prandtl  number

Prandtl number two third.

So,  now, we can  substitute  for  the  C f  x  part.  So,  this  is  Prandtl  number  one third

Reynolds number half divided by Reynolds number into Prandtl number Prandtl number

two third. So, where using the Stanton number expression, ok. So, this once again gives

rise to 0.332 Reynolds number to the power of minus half see in other words this clearly

shows that Stanton number Prandtl number to the power of two third is equal to half C f

x this is applicable also for laminar applies for laminar boundary layer too interesting

revelation all right, it is applicable for laminar boundary layer too, got it, ok.
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Now, so, that takes care of the third problem. The fourth problem; so, there is a fluid that

is flowing through a tube which has got a fixed diameter of about D there is a fluid flow

through the tube it has got a diameter of about D and length is about L m dot is fixed the

only change that can happen from laminar to turbulent flow because Reynolds number

happens to be in the vicinity of 2000, there is for internal fluid flow that is the transition

Reynolds number in either regime the flow is fully developed. 

So, this is an important assumption that is given. Calculate the change in pumping power

required  as  the  laminar  flow  is  replaced  by  the  turbulent  flow.  Pumping  power  is

basically given by the how much pressure that you need to put and correspondingly how

much mass you are pumping because of that ok. So, let us look at this problem, it is a

simple problem.
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So,  question  4,  so,  the  pumping  power  is  proportional  basically  proportional  to  the

product m dot delta P. So, P is basically equal to 1 by rho m dot delta P, where your delta

P is the one that actually is the, is a key player because it is f by 4 L by D into half rho U

square this we know, where f is the friction factor.

Now, all these other terms this L, D, U and the m dot these are kind of unchanged all

right, these are unchanged, ok. So, the mean velocity also does not change U which is the

mean velocity also does not change ok. So, U is basically what mean velocity is m dot by

pi by 4 rho D square where your Reynolds number D is given as U D by gamma all right.

So, the only thing that can change is the friction factor all right, ok.

So, the pumping power turbulent divided by the pumping power laminar is basically

given as f of the turbulence which is basically the friction factor and f of laminar because

rest of the things are kind of the same. So, for the turbulent friction factor it is given as

0.079 to Reynolds number D to the power of minus one fourth, if you recall your notes

and for laminar it is 16 by R e D. 

So, the total thing that we get is 0.00494 into Reynolds number D to the power of 3

fourth. If the Reynolds number is of the order of roughly about 2000, ok. The P turbulent

by P laminar these are not pressure these are basically the pumping power is about 1.48.

So, the pumping power of the turbulent  flow or the pumping power to  maintain  the

turbulent flow is about 1.48 than the corresponding laminar counterpart all right.



So, this is one of the most important another interesting short problem and we have done.
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The last problem in this particular series is that water is being heated in a straight pipe

with an inside diameter of 2.5 centimeter. The heat flux is uniform and the flow and the

temperature fields are fully developed. The local difference between the wall temperature

and the mean temperature is about 4 degree Celsius. Calculate the mass flow rate of the

water stream and verify that the flow is turbulent evaluate the water properties at about

20 degree Celsius, all right.

So, in order to do this ok, so, I am not going to solve this problem in total, but what I can

give you are some hints. So, that you can work it out it is not a homework problem per

say, but this is some problem that will kind of give you and we will post the solution a

little later ok, but you should know how this problem actually works. So, in order to

calculate, ok, I am showing you the steps h needs to be calculated first which is the heat

transfer  coefficient  that  needs  to  be  calculated  first,  then  you  need  to  calculate  the

Nusselt number, the Reynolds number and lastly the mass flow rate.

So,  Nusselt  number,  Reynolds  number  and  the  heat  transfer  coefficient  all  can  be

calculated using the standard correlations and the data that is given over there. So, once

you calculate the Reynolds number you can calculate U and from U you can calculate

what will be going to be the mass flow rate and check what will be the velocity of U.



From U you can find out what will be the mass flow rate because m dot is nothing, but

one forth rho D square into U.

So,  you  can  once  you  know U you  can  calculate.  So,  for  knowing  U you  need  to

calculate the Reynolds number all right and for knowing the Reynolds number you need

to  know  the  heat  transfer  coefficient  and  a  Nusselt  number.  Nusselt  number  and

Reynolds number are connected through the correlation or the correlation by the relation

that we established that we have already established. Do this problem and try to see if

you get a good match I can give you the answer m dot is about 0.281 kg per second. Try

to see if you can match that ok.

So, with this we finish basically our turbulence small session in which we have shown

you how to work out certain problems some numerical problems, and it will also give

you an idea how to use the relationships why and how they should be used. Also give

you a good idea about how the turbulence physics is in the limited time that was possible

and what turbulent convection is all about, ok.

So, in the next class, we will look at some of the other problems in the series which is

basically going to deal with droplets, sessile droplets and normal contact free droplet us

and try to see that how we one should evolve a methodology for solving those problems.

Thank you.


