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So, we had started this internal flow in the last class ok. So, if you recall what we did in

the internal flow? We showed that gamma plus epsilon m du bar by dr is equal to 1 over

rho  tau  naught  r  by  r  naught;  where  this  is  basically  was  the  tau  apparent.  This  is

basically the actual wall shear stress ok. So, tau apparent by tau naught is equal to minus

r over r naught. 

That is what you can write because of the reason that mentioned we mentioned over

here. So, this is your tau apparent ok. Now in other words if you now define a variable as

y which is basically r naught minus r ok. Then tau apparent minus tau naught can be

written as 1 over y by r naught ok. 

Therefore the tau apparent will be equal to 1 over y over r naught into tau naught ok. So,

at y equal to 0, that is r equal to r naught. So, it is just a reverse seeing the accesses; so

that means, now the y is 0 at the wall basically where r is equal to r naught ok. So, at y

equal to 0 the tau apparent is nothing, but the tau wall right. At y equal to 1 ok; where r is

equal to 0 that is what it implies that tau apparent is equal to 0 ok. So, therefore, so, these



are the two important things. So, at the y equal to 0 ok, you have the tau apparent is the

same as the tau wall and at y equal to 1 the tau apparent basically vanishes ok.

So, these are basically what we call the linear variations ok. Now tau apparent can be

assumed to be constant to be constant ok. So, that is what we have taken from here ok.

So, now since tau apparent is assumed to be constant ok, what can be done is that? We

can basically integrate this particular form and we can get du plus by dy plus ok; as 2.5

gamma r naught into gamma naught by rho raised to the power half ok. 

So, that is what you get after you take care of this particular integration. After you, now

you know that what your profile is going to be all right. Let us push this back. So, that is

what you get and this is when evaluated at y equal to r naught, this is the profile that you

get. Now based on this agreement this analysis, but however, one interesting feature that

you see over here that there is a mismatch; mismatch of the slope right. 

There is the clear mismatch of the slope at the center line because it basically tells you

that there is a finite slope at the pipe centerline because y equal to r naught is basically

that. So, what you have essentially is that there is a mismatch of slope or in other words

in other words, a finite slope ok; at the pipe centerline. So, you have a finite slope at the

pipe centerline ok. So, that is clearly not correct because if you recall for any pipe flow

no matter  what  the  turbulent  profile  is  going to  be  there  has  to  be  some kind  of  a

inflection point at the centerline ok.

So, this is one of the major drawback when you actually have that your tau apparent is

the same as your tower wall ok. 
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So, this brings about another empirical velocity correlation which says u plus is equal to

2.5 ln ok; 3 1 plus r over r naught divided by 2 1 plus 2 r by r naught square y plus plus

5.5 ok. So, this is like identical to law of the wall and it matches matches the 0 slope at

center line ok. So, this is an empirical velocity correlation though whereas, the previous

one that we showed that the tau apparent very close to the wall is actually equal to tau

naught ok. That produces as we said a slope which is finite ok.

So, the normal analysis, analysis which states you know that tau apparent is equal to tau

wall close to wall yields a wrong profile ok. So, that is what we have seen in the last in

the in the analysis that we just now presented ok. So, this is important and so, as you find

that there is a lot of empirical relationships when you ever you are dealing with this kind

of turbulent flow profiles ok. Now let us look at the friction factor. Now that we have

done all these things let us look at the friction factor. So, friction factor is like the C f x in

the case of an external flow ok.

So,  what  is  friction  factor? Friction  factor  is  basically  your  f  is  equal  to  tau naught

divided by a half rho U square; where basically U is the average velocity, if you recall

and U normally will be given as 1 over pi r naught square; it is a double integral U bar r

dr d theta ok. So, that is the definition of friction factor ok. This is the same definition as

in the case of a laminar flow right. So, there is no real catch over here.
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So, if you assume once again assume Prandtl's power law which is one-seventh if you

recall and assume that it holds till u bar is equal to uc and y equal to r naught ok. So,

assume that it holds till u bar equal to uc and y equal to r naught. So, the Prandtls power

law profile ok. So, then what you are you going to get your profile will be uc uc being

the center line velocity ok. So, tau naught divided by rho raised to the power of half; this

is the profile tau naught by rho half by gamma raised to the power of 1 by 7 th. Now tau

naught by rho raised to the power half is equal to u f by 2 ok. Therefore, U c by U f by 2

raised to the power of half; it is 8.7 r naught tau naught by rho half divided by gamma

raised to the power of one-seventh ok. .

Now if you put now this expression back ok; this expression now if you put it back to the

original form of your U, which is equal to 1 by naught square. So, you put it back in this

particular form you get your f to be almost equal to 0.078 Reynolds number based on the

diameter to the power of one-fourth. This Reynolds number is based on your U, compare

it with the laminar counterpart you will find that it is 64 by R e D if you recall. So, this is

basically scales as Reynolds number to the power of minus 1. 

So, as you can see this is a weak dependence on the Reynolds number, this is the same

type of dependence that we saw in our previous case as well ok right? Where we saw that

the Reynolds number dependence was kind of very mild ok. So, you can take a look at



your figure 8.2 of Bejan, where you can see that this gives you basically the friction

factor with the Reynolds number ok.
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So, for the laminar counterpart you will have if I try to redraw it kind off. Let us try to do

that. Of course, you can still take a look from your book this is UD by gamma right, that

is the Reynolds number and this is basically written as 4f ok. It does not really matter

what you write ok. So, it is basically plotted against f versus the Reynolds number. So, it

is about 0.1 it starts ok, this is about point o 1 ok. 

So, your laminar  profile is  going to come down like this  ok.  So, this  is  the laminar

profile; as you can see the drop is very sharp is f is basically 64 by R e D. So, this scale

because it is plotted with 4 f, this will be with respect to 16; 16 by R e D right ok. So,

that will be the velocity profile. Now this is basically the Reynolds number is about 10 to

the power of 4 right around here. Well it is a little bit moved from here; let me not just it

is around here, 10 to the power of 4.

So, this will be roughly around it continues up to about 10 to the power of 3 and a little

above right; which is standard as you know around 2000 Reynolds number of around

2000 the laminar profile this kind of reasonably valid right. Then of course, you have the

Carmen Nikoradas type of relationships base based on what is the roughness factor, but

if the roughness is kind of pretty low. The profile will look something like this. Let me

draw it, something like that. So, this actually kind of merges around 10 to the power of 7



ok. So, this is about 10 to the power of the 4, this is about roughly 10 to the power of 3

ish ok. So, you know around 2000 it will start to go. So, there is a transition zone right

around here and then the profile is kind of a lots smoother something like that. Of course,

as you increase the roughness this profile takes different values, so for kind of a smooth

pipe ok.

So, that is the kind of friction factor that you will normally get which gives you roughly

a Reynolds number of minus one-fourth kind of our dependence. That is why the slope is

kind of lots smoother compared to the minus 1 slope that you would not only have in the

case of your Reynolds number ok. So, based on surface conditions and other things you

can have a lot of differences, but this is in a nutshell which actually tells you that when

you actually have a turbulent flow there basically this is what actually happens ok. 

Now, you can device the same relationship from law of wall. Remember there are two

ways of finding the friction factor. In 1 case we can find out the friction factor, but just

by looking at the assumed velocity profile which was what was done by Prandtl. Now

you there is any another alternative by which you can actually look at the same profile,

the same friction factor profile from the law of the wall right. So, that will be the second

way. 

We did the same thing in our flat in our external boundary layer ok. So, there what we

found is that the friction factor would be something like this; 1.737 ln Reynolds number

D minus 0.396. This comes from the law of the wall  ok.  Ok? So, these are the two

interesting things that we can observe ok. So, in two ways we have basically determined

the same thing.
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Now, we go to the heat transfer coefficient argument. So, you first go to the stage of fully

developed ok. So, once again we start with the fully developed kind of a flow profile

right. So, the position will be rho C p u bar dt bar by dx is equal to 1 over r d by dr r q

apparent double bar right. So, this is basically the fully developed profile. Once again we

have substituted it by the q apparent right because that is if you recall that is epsilon h

plus alpha right that was what it was. Now if you integrate it up to any r; this is rho C p u

bar dt bar by dx r d r is equal to r q apparent double prime. If you integrate it up to r

naught you would get rho C p u bar dt bar by dx rdr r naught into q naught double prime

right because if you are doing it the integral up to the up to the center line right? 

So, it will be naturally equal to the q naught double prime. This is the wall; heat flux this

is the apparent heat flux that we can decipher right. So, what we do is that if you take the

ratio of the two right, these two quantities Let us call this 1, call this 2. So, what we do is

that we divide 1 by 2 ok. So, in other words you have your r q apparent double prime

divided by r naught q naught double prime ok. That is equal to from 0 to r rho C p u bar

dt bar by dx r d r divided by to r naught rho C p u bar dt bar by dx r d r right.

So, this  is  the two divisions that  we have done. So, now what will  happen is that q

apparent double prime divided by q naught double prime is equal to r naught by r; 0 to r

u bar dt by dx r d r to r naught. So, this is just a basic division that we are doing ok, ok.

So, at this point once again we define define y is equal to minus r minus r naught right; y



equal to min[us]- that is the same way that we defined it in our velocity case. So, this

will lead to 1 minus y by r naught should be now equal to 1 plus r minus r naught by r

naught which will give you basically r over r naught right ok. This is what you get.
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 So, therefore, your q apparent double prime divided by q naught double prime is given

by some factor M multiplied by 1 minus r over y over r naught. So, where M is basically

given as 2 by r square 0 to r u bar dT bar by dx r d r divided by 2 by r naught square 0 to

r naught u bar dT bar by dx r d r. So, this is basically that ratio of the two terms that we

have written as M. Now if the pipe is  heated by heat  flux,  heat  flux which is not a

function of so, it is heated by a heat flux such that that heat flux is independent of x ok. 

So, that heat flux is independent of x that is not a function of x ok. So, therefore, this

leads to your d T bar by dx is also not a function of r in that particular case. Or in other

words what happens is that this term that you see over here this basically all cancels out

this dT by dx from on both sides because this is an integral which is performed with

respect to r only.

So, therefore, your M based on this assumption if you apply this assumption basically

boils down to 2 by r square by 2 by r naught square right, integral 0 to r u bar r d r

divided by 0 to r naught u bar r dr right. That is what we get. hmm So, these two this is a

reduction  in  the  profile  based  on  the  fact  that  your  axial  temperature  gradient;

temperature gradient gradient is not function of r anymore got it. So, that is an interesting



fact ok. So, so, right now in what we will do in the immediate next class is that we will

see that how this profile can be kind of adapted and it can give us some pretty interesting

results at the end but you understand the steps once again to recap it very quickly ok.

So, what we have done is basically after we had done with the with the friction factor, we

have just written the equation for the fully developed fully developed flow ok. And we

have just integrated it into two parts: one from 0 to r and from 0 to r naught; one is q

apparent, one is q not double prime. We have taken that ratio of the two, we have defined

another variable substitution basically and then we have defined that this variable is a

function of your M and this M is basically given by this particular quantity over here.

Then we argued that your actual temperature must have been not a function of r. 

In that case is just boils down to something like this ok. Remember the integral limits are

different ok. So, in the next class we will see now how this can be further simplified, so

that we can get some insights about what is going on in this kind of a pipe flow ok.

Thanks.


