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Ok so one other way of doing the same type of analogy is basically if you look at. So,

your tau naught is basically your mu plus rho epsilon m to du bar by dy and q naught

double bar is  k plus rho epsilon H into C p dt bar  by dy ok. So, these are the two

expressions. Now if you are Prandtl number is of the order 1, that is equal to 1 and your

epsilon m and epsilon H are the same ok. So, therefore, what you have is basically tau

naught by q naught double prime is equal to mu plus rho c m k plus rho epsilon H into C

p du bar by dy d T bar by dy or in other words. So, I am not writing the left hand side

anymore. I will write the right hand side; rho C p rho epsilon m divided by rho C p

divided by k rho C p plus rho epsilon H C p divided by rho C p. 

So, du bar by dy divided by dt bar by dy ok. So, again this part I am not writing, I am

only going to work on this particular section and therefore, we show C p; C p divided by

alpha plus epsilon H. Once again this part you can see what we are going to write; this

part I am not writing anymore, minus tau naught divided by q naught square q naught

double prime is equal to 1 by C p du bar by d T bar right. So, in other words as you can



see over here Prandtl number is equal to 1 and epsilon m is equal to epsilon H right.

Based on those assumptions you get this is your final form.

Now, if you integrate this, integrate from the wall which is basically u bar equal to 0

comma T bar is equal to T naught to u bar equal to u infinity T bar equal to T infinity. If

you integrate across those twp limits, if you integrate across those two limits ok what

you are going to get is T naught minus q naught double prime C p divided by T infinity

minus T naught is equal to u infinity. We already know that c f x is basically tau naught

divided by half rho u infinity square right and your Stanton number is basically h by rho

C p into u infinity.

So, combining these two we get half c f x is equal to Stanton number. So, you basically

get the same thing for Prandtl number is equal to 1 ok. This is also a the Colburn analogy

and it also is for Prandtl number t is equal to 1. So, in other words what this essentially

means is that from that expression that each eddy each eddy has the same propensity,

propensity to transfer to transfer heat or momentum; momentum for Prandtl number the

turbulent Prandtl number is equal to 1 ok.

So, when this is not equal to 1 this expression starts to deviate ok. That is it starts to

deviate from the Colburn’s analogy that we have over there right. So, now, now that we

have come to this particular form ok. So, let us look at ok, some of the 1 interesting way

of putting things together.
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That means, if you have say for example, this is a like a flat plate ok, this is the boundary

layer profile and if you take a look at any particular section of this boundary layer profile

any particular section. So, this part is X this part is X 1 ok. So, what we can say because

of the nature of turbulence that because it is highly oscillating ok. So, each spot, so, so,

far we have done assuming that its nice and steady right. Another way of approaching the

problem is that to have some temporal fluctuations right. Right now we have said that is

all nice and steady. Our equations do not have any temporal variation at all right.

So, one way this is of course, done by Bejan in his book that each spot of this wall of this

wall is contacted. So, I am just writing the basic features conducted by u infinity which is

a fast moving fluid and T infinity which is a cold fluid, cold fluid ok. So, when they are

contact, each spot of this wall is contacted by this fast moving and cold fluid ok. 

Therefore, it is characterized; it is characterized by max shear stress shear stress or heat

flux ok. So, whenever that happens it is characterized by the max shear stress and heat

flux right. In a way that is true because you are bringing in all of a sudden fast moving

fluid and cold fluid right; when each spot of this wall right. In between being covered, in

between in between the regions are covered with you know slow and hot fluid right and

so, in between in between these things you are met with this slope and hot fluid.

So, if you transfer it to a graph I think that would be visually appealing that this is the

say X and X 1. These are the, I am only looking at that part of the box right. So, what

happens is that this is basically your kind of your tau naught max right. So, what happens

is that this is basically your tau naught wall tau naught x, the some kind of a average

quantity. So, you see that it goes up like this, it comes then it goes up and then again

something like this ok. So, it reaches up to that that particular level and each of these

coverage  areas  is  given by L ok.  So,  basically  this  is  the time averaged is  the time

averaged quantities which is basically tau naught x and q naught double prime x. So,

both of these are basically time averaged quantities ok. 

So,  now and tau  naught  t  and q naught  double  naught  t  will  vary  will  vary  in  that

landscape; which is X to X 1 right. So, that is the emphasis.
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Now, let us now say this eta as a function of x is equal to l; which is the direct contact

spots divide it by the total length of sample wall X to X 1 ok. So, this is the total number

of those contacts, what is the sum and this is the total length because some spots are

never really wetted by this cold or hot fluid cold fluid essentially ok. So, therefore, your

tau naught divided by tau naught max should be a function of this eta and this should be

similar for this your q naught and q naught double prime max got it. 

So, now therefore, your tau naught by q naught double prime; therefore, should scale as

your tau max by q double max ok. So, when there is a hot moment of when there is a

cold fluid coming, heating at a fast phase, it is also bringing cold temperature with it ok.

So, that is the, that is why this scaling actually works. So, this we already know this is of

course, Stanton number divided by half of c f x. So, this actually then varies as q double

prime max divided by T naught minus T infinity into U infinity  divided by C p tau

naught max ok.

So, what are the scales basically? Scales of a tau naught max and q double prime 0 max

ok. So, tau 0 max scales as a rho U infinity square into U infinity L divided by gamma

raised to the power of minus half. This comes from your laminar boundary layer theory,

if you recall right because that is what the cold is actually meeting the surface. So, then q

double prime max divided by T naught minus T infinity;  therefore,  scales as K by ,

Prandtl number 1 third U infinity L by gamma raised to the power of half; all these are



valid for Prandtl number greater than 1 ok. So, for this laminar sub layer that covers the

direct contact sports this is like a flat plate with length L in the laminar shear layer, that is

what we have used over here right.
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So, Stanton number X to half C f x is therefore equal to K L Prandtl number 1 third U

infinity L by gamma raised to the power half rho U infinity square L by gamma raised to

the power of half multiplied by U infinity T naught minus T infinity into 1 by C p. This

therefore, if you do all the motions this will be Prandtl number two-third into 1 minus T

naught minus T infinity. This is very similar to the Colburn. You just do the map, do the

steps you will get this Colburn formula; very very similar to the Colburn formula ok.

Also we get your eta, actually equal to C f x divided by U infinity L by gamma raised to

the power of minus half. This is also you get ok, ok.

So, we got a lot of detailed outcome for the temperatures and we also got a lot of detailed

insights  ok,  into  the  external  flow  right.  For  the  turbulent  external  flow  we  can

summarize and say that there is an outer region right. Then there is an inner region; inner

region is composed of two viscous sub layer and the turbulent sub layer right. In the

viscous sub layer ends where the Reynolds number is approximately 10 ok. Then the

turbulent  sub  layer  is  marked  by small  eddies  ok.  We have  established  the  analogy

between heat and mass transfer ok. For the temperature profile there exists something

called CSL which is basically conduction, which is basically the same as the viscous sub



layer. So, conduction sub layer. This is of the order of 11.6; this is of the order of 13.2

right. In addition we have learned something about Prandtl mixing length, the closure

problem of turbulence right and where it originates. We learned that it is the non-linear

terms; terms in Navier stokes equation that were responsible,  for the for U prime, V

prime and then U prime T prime, V prime T prime etcetera ok. We saw that the boundary

layer approximation is valid; that means you still have your dy much much greater than

your dx right got it. 

So,  there  are  numerous  such  things  that  we  have  found  out  using  a  lot  of  these

relationships got it ok. So, the closure problem of turbulence and the Prandtl  mixing

length everything we have been able to provide analogy between heat and mass transfer,

the inner region the outer region. So, we have covered a lot of materials ok, in especially

in the external flow part. 

Now what we are going to do is that we are going to look at the turbulent duct flow right.

Because turbulent duct flow is the one that is going to take us to the almost towards the

end of this particular work, particular lecture ok; I mean let us start with the turbulent

duct flow and let us see how much we can do in this class. 
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So, turbulent duct flow is a typical example of an internal flow right. So, you consider

this as your duct. So, this is your r, this is your x, this u bar, this is your v bar. So, I am

not going to redraw it once again. This is what we are going to carry forward in the next



class also.  Say again we are trying to do the same thing like RANS approach. That

means,  we are doing the Reynolds averaged,  Navier  stokes equation ok.  So, for this

particular duct what we have? The equations are is equal to 0; that is the continuity for u

ok. Similarly, so, it is observed it is observed that the turbulent flow becomes statistically

fully developed developed ok. 

So that means, Hydrodynamically plus Thermally ok, after X by D of approximately 10

which is basically the same as X t by D ok; one is the thermal boundary layer thickness,

one is the velocity boundary layer thickness ok. So, these are the basic equations. It is

observed  that  it  becomes  statistically  fully  developed;  does  not  mean  that  all  the

fluctuations are gone. It is statistically fully developed and on the top of that no wake

region and of course, inertia is negligible. No wake region and inertia is negligible ok.

So, this is r and x, this is u and v; u bar and v bar rather ok. And so, the this is the

expression we have ok. So, we will do force balance now. 
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So, if this is the pipe or duct whatever. You take a control volume along this. So, this has

got the pressure p ok. So, there is the pressure on the other side which is basically your p

bar plus d p bar ok. So, this is the center line, this is that r naught; that is that this is x,

this is x plus dx right. So, what you have you do a force balance on this right. You will

have your p bar into pi r naught square minus p bar plus dp bar pi r naught square minus

tau naught into 2 pi r dx is equal to 0 right. Of course, you have the shear which is acting



here that is your tau naught right. So, this is just a control volume around the control

volume what are the forces that are applicable you take that there is no inertia. So, there

is no component of inertia that is acting. So, it is only a pressure and the shear stress

balance right.

So, therefore, what you get is minus dp bar by dx is equal to 2 2 tau naught by r naught;

this is quite clear right this is how you get it. So, this solves a major part of the problem

because if you look at your previous expression you find that this term is obviously, not

really useful right because that is inertia. We needed something for dp by dx right. We

needed to know what is the nature of dp by dx. Now we have found out what will be the

value of this dp by dx. So, that that is nothing, but the wall shear stress. So, therefore 2

by rho tau naught by r naught plus 1 or d by dr ok; where the substituted for dp by dx.

That is all that we did took it and substitute it here right ok. 

So,  this  forms the basis.  Now we can quickly do the integration.  So, r  gamma plus

epsilon m dr is equal to minus 2 by rho tau naught by r naught r square by 2 plus c ok.

So, at r equal to 0, du bar by dr is equal to 0. So, therefore, this leads to c is equal to 0

right. So, together what we get is gamma plus epsilon m du bar by dr is actually equal to

1 over rho tau naught r by r naught ok. So, that we get through our standard because this

r and this r one r cancels out. So, this is the form that we get and this 2 and this 2 cancels

out. So, this is the form that we get ok. 

So, out of this we already know is a tau apparent. This is the apparent shear stress got it.

This is the apparent shear stress and on the right hand side we have the actual wall shear

stress; the wall shear right. So, in the next class we will see how we can handle this

problem from this part onwards right. So, this is very easy. We have now got the apparent

shear stress is equal to the wall shear stress multiplied by these factors ok. So, we will do

in the next class, that how this problem now can be handled.

Thank you.


