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Lecture – 46
Reynold’s Averaged Navier Stokes equation – I

In this lecture we started with Turbulent flows and we said a few things about Turbulence

flows.
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And the  1st  point  that  we mentioned  about  turbulent  flow is  that  energy. Energy is

cascaded and never accumulated. This is one of the most important thing and of course,

the dependence on initial conditions and boundary conditions. This I explained by giving

you the example that if you take the same measurement at the same time instant even for

a pipe flow, you will find that the velocity profiles will come out to be very different.

Whereas, the statistics that is the 1st moment and the 2nd moments those will match. So,

no matter, how good your experiment is? Or how good your simulation is? It is always

the nature of Turbulence is to amplify those minute differences. So, that you get very

widely different profiles in the temporal space. So, it is, but the important part was we

also said that the energy is always cascaded and it is never accumulated. That means,

from the large eddies, you get the energy which is transferred to the smallest eddies;



where viscosity becomes important and viscosity actually dissipates the energy in the

system.

So, the energy per unit mass; per unit mass, it can be given as u square which is the that

is at the highest, that is at the largest eddy level is u square divided by l by u; where this l

by u is basically called the eddy turnover time. It is basically the time that it takes for an

eddy to rotate, to break or to rotate. So, that is the eddy turnover time. So, if one is the

length scale and the velocity is u. So, l by u gives us the time scale which is called the

eddy turnover scale. And u square is basically the energy that is carried by that eddy.

Now, so, this is the energy at the largest eddy level. Now, for the smallest eddies, we said

that dissipation is important. Dissipation is important. What is Dissipation? Dissipation

takes place where viscous stresses are actually more, the most important parameter. So, if

Dissipation is taken as epsilon it is given as. So, this is written in the index notation;

where, S ij is basically given as half.

So, this basically is basically nothing but the cross derivatives or basically ui differentiate

it with respect to xj. So, the contraction happens over i and j. So, this is basically what

we call  the Dissipative  scale  or  the Dissipation  level.  Now, this  will  scale  from our

scaling arguments, we can say that the dissipation will scale something like because it is

Sij Sij. So, basically this is v by eta; where, x if you remember this is the smallest eddy

scale. 

So, eta is the smallest eddy scale and v is the corresponding velocity. So, in other words,

we know that since, there is no energy accumulation. So, whatever energy is possessed

by the larger eddies has to be pumped into the smallest eddies, where they are actually

dissipated.
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So, basically this translates to that your u cube by l has to be the same as your gamma v

square by eta square. So, in other words, the energy per unit mass of the largest eddies

has  to  match  whatever  is  the  dissipation  level.  And  so,  this  is  the  first  important

relationship that we have, let us call this 1. 

The other important relationship is that v eta by gamma should be of the order 1 at the

smallest  eddy scale  because  here,  this  means  here  at  the  Reynolds  Number. This  is

basically nothing but the Reynolds Number.

Reynolds Number is of the order 1, when Reynolds Number is of the order 1; because it

is a ratio of inertia versus the viscous stresses. When it is of the order 1; that means, your

viscosity is important. When eta is of the order of l, in that particular case your Reynolds

number is  say 1000, 3000, whatever  it  is.  So,  in  that  case the inertia  is  much more

dominant than the viscous stress.

So, these are the 2 relationships that you get. This is 2. Now, what we can do is that, we

can get rid of the scales and we define our normal Reynolds number as ul by gamma. So,

this is the Reynolds number based on the largest scale. In most of the cases, if you recall

the example that the eddies are shed behind as sphere. Then this l will be of the order of

the size of the sphere because the largest eddies are always of the size of the obstacle in

this particular case.

So, if you take these 2 situations into consideration; from 1 equation, you will get your

eta. It will be equal to or scale as l Reynolds number to the power of minus 3/4th. The



other one will be v will be u Reynolds number to the power of minus 1/4th. So, these 2

corresponds to the smallest eddies; these basically correspond to the largest eddies as

simple as that.

So, in other words, your eta by l basically scales as a Reynolds number, you can write it l

if you want. It is 3 4th. In other words, the ratio of the 2 scales, this is the smallest and

this is the largest. It is actually proportional to Reynolds number raised to the power of

minus 1 4th or in other words, as the Reynolds number increases, the difference between

these two scales actually widens.

So, if you are dealing with say for example, reynolds number equal to 100 or 300, you

will have a scale difference as you go on increasing the Reynolds number; that means,

this, this fraction is becoming smaller and smaller in nature. It would mean that eta will

be  a  smaller  and  smaller  fraction  of  l.  So,  this  essentially  implies  that  since  eta  is

becoming  a  smaller  and  smaller  fraction  of  one  that  disparity  between the  2  length

scales; that means, from between this and this. This is of the order l; this is of the order

eta. This disparity actually goes on increasing.

So, of between the larger scale and the smallest scale, the disparity increases as you go

on increasing the Reynolds number and this poses one of the most serious problems in

turbulence modeling. So, as Reynolds number increases, eta and eta l ratio; eta by l ratio

decreases. So, for example, if you take Reynolds number equal to 1000, say as a sample

case l is of the order of 1 centimeter. Then, you will have eta which is of the order of

0.05 millimeter or in other words 50 microns.

So,  for  a  1000  Reynolds  number  case,  1  centimeter  is  a  largest  eddy;  whereas,  50

microns is a smallest eddy. So, this poses a very serious problem, if you want to do say

for example, Turbulence modeling. Because in that particular case, say if your Reynolds

number is of the order of 10 to the power of 5 highly Turbulent flow. You can calculate

that if your l is of the order of 1 meter; what will be the value of your eta? From this

particular expression, it is very easy to calculate.

You will find that the disparity between these 2 scales is so huge. That means, your grid

if you are trying to basically discretise this whole thing and do a CFD, of the whole

problem; you will find there is one and only one important bottleneck here. And that



bottleneck is that your grid size has to be very small. So, not only it has to resolve the eta

scale because that is where dissipation is important.

At the same time, you have to resolve the largest scale which may be of the order of 1

meter. So, even for very simple flows, this is a very taxing process. Like for example, if

you do a simple flow through a pipe or a jet that is coming out; this is a very very taxing

process to begin with. And more the higher the Reynolds number and more complicated

the flow is, this creates a insurmountable problem in CFD.

Sometimes, if you with the best of the supercomputers available; it can take the years,

years. Actually to solve physically you know a realistic level problem say flow through a

gas  turbine  is  one of  the  realistic  level  problems.  On the  top of  that,  if  you have  a

chemically reacting flow; that means, there is combustion and things like that, going on

that happens at the molecular scale.

So, in order to resolve that, you further need to have that kind of resolution. So, the idea

of turbulence is as follows, before we take on the next dive. That Navier stokes equation

still governs the turbulence. Let us be clear about, that it still governs turbulence. The

main problem is that the sensitivity to initial condition and boundary condition is a one

of the prime as we already narrated, one of the prime factors.

Because of the sensitivity, because of the non-linearity of the Navier stokes equation any

things gets amplified and turbulence is basically a manifestation of that.  Now on the

other side, this disparity of the length scales; that means, you have too many a whole

region maybe from 50 micron all the way up to 1 centimeter, on 1 meter basically this is

the range that you need to cover; that means, you not only have to have to see what is the

dynamics of the large it is; you have to also see the dynamics of the smaller eddies.

So, all these things needs to be done in a computational framework because analytically

it  is  not  solvable.  That  is  very  hard  to  do,  but  people  do  something  called  Direct

Numerical Simulation which is called DNS and there are other things that people do. But

that is for very simplistic level problems to understand certain things. But other than that,

1 has to devise some kind of a framework through which you can address this turbulence

because it is a very time consuming affair. And if you are working in industries or you

are trying to solve any engineering problems, you need answers you cannot wait  for

years for a simulation to complete that can be long term.



But at least you need for quick design fixtures and things like that, you need to know that

what is, what can be done with this Navier stokes equation; maybe a simpler version can

be used to understand Turbulence. So, Navier stokes equation as such is not unclosed.

So, when you hear people saying that a closure problem in turbulence is one of the main

factors; that closure problem is actually created by us. 

Normally the Navier stokes equation is not unclosed. It is exactly the same. It is like that

when we try to extract certain statistics or we try to do some simplifications or to the

Navier stokes equation; that is where we initiate certain things which you will see in due

course that, what are those certain things that happens? 

So, turbulence another thing that we should like to mention over here is as follows and

this is also important.
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So, if you take a jet say coming out of a pipe. So, it can be the tailpipe of your engine say

for example. So, the flow is turbulent and you take one point over here, another point

over there separated by a certain distance. So, what do you expect to see? You expect to

see that if this point 1 and 2 are basically close to each other, you will find that when

there is a vortex that is being shed; when there is a eddy turnover over here that would

have some effect in 2 as well if they are very close to each other.



But  as  1  and  2  get  separated  from each  other;  that  means,  as  their  separation,  this

increases you will find that the effect slowly becomes gradually nullified. So, typically

we address these problems; we will do that later, what we call the 2 point correlation

kind of a technique that how if you create our disturbance here, how does it how is it

correlated with a nearby point. 

So, this can be done as a spatial correlation; this can be done over temporal correlation.

So, all kinds of things can be done or in other words, so, you have an eddy that is being

shed depending on the level of turbulence, that effect of that eddy somehow will be felt

at 2 as well. 

So, if you measure the velocity profile at 1 and you measure the velocity profile at 2, you

will find that there will be a degree of correlation between the 2 and this correlation does

not really happen with respect to 1 component of the velocity. Say for example, you are

measuring u prime.

So, u prime you are measuring at 1 particular point and then, you are measuring u prime

at some other points x plus r this may be x. So, you are measuring u prime at 2 particular

locations. Similarly your. So, this is 1 component of the velocity disturbance has created

a fluctuation in a nearby field. 

Similarly, you will have like a v prime at x can actually cause a u prime at x plus r. So,

basically you can have a parcel of fluid which quickly goes from 1 point to the other. It

will not only cause a variation in the u prime, but also in the v prime. So, that is the

whole idea.

So, all these components in turbulence is highly 3d in nature. Turbulence is highly 3d.

So,  it  is.  So,  that  is  one of  the basic  concepts.  So,  you can have a lot  of statistical

techniques, some of which we will try to see given the interest of time, but will. But one

important factor will be for a turbulent researcher is to find out how good the correlation

is? Where the flows are basically correlated to each other? 

So, but those are statistical techniques that will come a little later. But keep in mind that

when you have a fluctuation in the x component of the velocity, you have do have a

fluctuation in the y component of the velocity as well. So, you cannot take those terms to



be equal to 0 and that is exactly paves the way for some of the closure problems that we

are going to have very shortly.

So, we are going to introduce, what we call something called the Reynolds average to

Navier stokes equation. But as we said the turbulence is kind of a either you know it has

got some statistical origin and things like that we always say things like this. So, let us

look at  what  is  Reynolds  averaged  Navier  stokes  equation  before  we go to  the  and

boundary there. So, it is called Reynolds averaging.

So, Reynolds averaging means that you have a u, which has got a u bar and you have a u

prime.  So,  basically  you  are  dividing  the  terms  into  2  terms  basically  1  is  a  mean

component  and we will  see  what  the  mean  is.  And one  is  a  fluctuating  component.

Similarly, all quantities will behave like that. So, P will have a P bar plus P prime sorry.

We will have a v bar plus v prime; w as I say turbulent is hardly the highly 3d and even if

we have temperature T will have a T prime.

Now, here your u bar is basically summed over. This T is not the temperature. This is

basically the time averaging. It is done over a long enough time period. It is done over a

long time period. So, that you basically smother out everything. Similarly, your u prime;

if you take an average of u prime 0 to T, u prime dt that should be equal to 0 because it is

a random fluctuations. So, if you average a random fluctuating quantity over time this

will be equal to 0.

So, u prime that is just the fluctuation; u prime is what u prime is basically u minus u bar.

So, the average of that if you take an average of that particular quantity; this should be

equal to zero. So, let us establish certain rules based on this which will be needed.
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So, these are the rules; u plus v bar some of the average of the summation of 2 quantities

is basically u bar plus v bar.

u bar by u prime bar; that means, it is a multiplication of u prime and u prime bar. That is

equal to 0. u v bar that is equal to u bar v bar plus u prime v prime bar. This is not equal

to 0. So, u prime v prime bar. Similarly, u square bar is given as u bar square plus u

prime square bar. This is also not equal to 0.

So, basically the product of the 2, average of the product of the 2 fluctuations is not equal

to 0. Similarly du by dx bar given by this. So, these are the rules that we lay down for the

current problem. So, based on these rules, now, let us do the first stuff which is mass

conservation. The mass conservation should be the first customer in the business.

So, what we do is basically you have first you split the quantities; that means, it comes

out  as  this.  Now, if  you  apply  the  rule;  now over  here,  you  see  that  these  are  all

fluctuating quantities over here. So, naturally they will actually go to 0. So, effectively

your  mass  conservation  equation  looks  exactly  the  same  as  your  mass  conservation

equation would look like, even if you did not do any averaging.

So, it is basically that is what we get. So, it is basically the dilatation of the averaged

quantities is basically equal to 0. So, in the case of a laminar flow, you did not have those

bars over there, but this exactly looks that that. So, there is absolutely no problem. So, if



you apply a statistical  tool,  we have a basically  applied a statistical  averaging to the

Navier  stokes,  I  mean to the  governing equations  and we find that  the  conservation

equation behaves in exactly the same way as you would expect.

I  mean in a laminar  because the conservation of mass equation is basically  linear  in

nature, but things gets a little dicey.
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When we actually go to the x momentum equation and the y momentum will be very

similar and the z momentum will be similar as well. So, what you have, if you write it in

the conservative way. So, this  is  the equation.  Now, what  we do first? You split  the

quantities.

So, you have your du bar by dt plus and then, you take the average. So, it is u square bar

plus 2u u prime plus u prime square, you take average plus d by dy u bar v bar plus u bar

v prime plus u bar v prime you take the average of that plus dz u bar w bar. This is equal

to minus 1 over rho d by dx P bar plus P prime. Once again, you take the average of this

plus take the average of that.

Now, what will  happen? Several  of these terms will  basically  knock themselves  out;

these terms will all go correct. So, and this term also and all these components will go

because these are all fluctuating quantities. It has got no pre factors. So, ultimately the



equation will be u bar du bar dx plus v bar du bar dy plus w bar u bar dz dP bar by dx

plus gamma minus, minus. 

So, as you can see just pay a little bit of an attention to the last, these up to this point it

looks exactly like your Navier stokes equation. Ad-vective term, pressure term, viscous

term; these 3 terms that we have accumulated all of a sudden, these 3 terms that we have

accumulated. These are basically has evolved because of the reason that the Ad-vective

terms over here they were non-linear in nature. 

Because  they  were  non-linear  in  nature,  out  pops  these  3  additional  terms,  these

additional terms has got it is origin in the advection quantity. They are not of viscous in

nature. They originate from the convection, but why we have taken it to the right hand

side; we will explain in a little bit. But these terms basically we have no idea, what they

are 1 is you prime square bar, 1 is u prime v prime and 1 is u prime w prime bar. So, all

these correlated quantities like what we say it like how u prime is correlated to itself all.

All these correlated quantities or what is the degree of correlation, we have no idea that

how these terms are related to the flow field. What is their nature? The rest of the terms

we know; we know exactly that this is the Navier stokes equation. This is what happens?

So, these terms are basically unclosed in nature. They are not closed and because they

are not closed; there lies the problem that when you do our, apply a statistical averaging

to Navier stokes equation because of the non-linearity, you do get this additional popped

out terms; 3 terms here. 

So, each momentum equation will have three terms essentially, but they are symmetric

that is means u prime v prime is the same as v prime u prime. So, if you put them in a

matrix,  basically  you have  you have  a  symmetric  1.  So,  but  the  all  these  terms  are

basically unknown and we have to find a way to understand what is the nature of those

terms. Otherwise, your equation simply becomes unsolvable in nature.

So, this creates the first of the closure problems. So, in the next class, what we will see

that what will happen to the energy equation because the energy equation will also have

similar things that will that will come up as a result of this. So, see you in the next class.


