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Natural convection – Tutorial II

So, last class what we did was that we started doing this problem, if you look at it over

here, you will find that this is a typical Bernard convection, which we already covered.

(Refer Slide Time: 00:21)

And now we have put a partition which basically suppresses the Bernard convection at

the top and the bottom. So, it essentially translates to that your Rayleigh number must be

less than 1 7 0 8.

So, this partition basically freezes the convection on both sides. So, under this pretext we

are supposed to do the problem and we started and let me just recap and put the numbers

in.
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So, we said that H one is equal to x H and H 2 is equal to one minus x H delta T 1 is

equal to x into delta T, delta T 2 2 minus x into delta T. So, the temperature is basically it

is a linear profile, because you are having a pure conduction driven problem now.

So, this is basically your this particular thing is basically your delta T 1, this is basically

your delta T 2 and this is basically the division, this is H 1 this is H 2 and this is the

partition and this is the total H. Now our objective is to determine the optimal location x

which is basically the optimal location.

So, that the regime of pure conduction extent and regime of pure conduction conduction

can be achieved achieved for highest R. So, basically the highest Rayleigh number and

Rayleigh number is defined as what R a g by alpha beta by gamma H cube into delta T

that is the Rayleigh numbers definition all right ok.

Now, this is the external Rayleigh number based on the overall height and the overall

temperature difference, why not actually define Rayleigh number for this intermediate

blocks for this as well as this right. Because for the partition as for this entire system

each block that is this block 1 and block 2 Rayleigh they almost behave like independent

kind of systems well they are strictly not independent, but they behave like one for the

purpose of our analysis over here.



So, 1 and 2 basically belongs to we can define 2 Rayleigh numbers based on 1 and based

on 2 all right. So, the idea is that if the individual sub layers do not show any convection

then there will not be any overall convection in the system as well. So, based on this we

can write. So, as long as the Rayleigh number is small.

(Refer Slide Time: 03:51)

So, g by alpha beta and gamma H 1 cube into delta T 1 is less than 1 7 0 8 this we know

from the criteria of Rayleigh Bernard convection.

For the lower sub layer so it will be g by alpha beta by gamma H 2 cube into delta 2 that

is less than 1 7 0 8. So, that if the convection is suppressed in the entire layer, when these

2 conditions let us name them as 1 and 2 are satisfied, then there will be no conviction in

the overall system as well right. So, in other words we can substitute.

So, we substitute the formula for H 1 if you recall H 1 was x into H and H 2 was 1 minus

x into H. So, you substitute them over here. So, and we rewrite these conditions as a

Rayleigh number less than 1 7 0 8 by x to the power of 4 and Rayleigh number less than

1 7 0 8 1 minus x to the power of 4. So, these are the 2 relationships are given. So, this

conditions let us name this as 3 and this is 4.

So, these 2 conditions are satisfied simultaneously are satisfied simultaneously by all

Rayleigh number x points under. So, if we draw now the curve you will see what I mean.



So, this is your x basically starts from 0 this 1 is about 0.5 this 1 is 1 and here we are

plotting R a 1 7 0 8.

So, this is 1 this is 10 this is 100. So, 1 graph will be something like this. So, this is 1 by

x to the power of 4 the other graph will be like this 1 minus x to the power of 4. So, this

is the region between the 2 graphs in which you have Rayleigh number less than this as

well as less than this on both sides. So, these are the 2 master graphs right. So, on this

side you satisfy 1 criteria not necessarily the other. So, in this is the region where you

basically satisfy both the criteria’s.

So, this is the point this is the area under the graph, where do you satisfy basically the

both the things and this comes exactly as 0.5. So, x optimum is about 0.5 because this is

the highest Rayleigh number that you can get. All these regions will be satisfied for any

other Rayleigh number try to understand that, if your Rayleigh number is below these

limits you will satisfy them regardless.

But the point is that we want the highest Rayleigh number at which this will be satisfied.

So, highest will Rayleigh number peaks at around 0.5. So, you can have lower bounds

also;  that  means,  you can have x in  other  locations  also.  So,  long as your Rayleigh

number is beyond a is below a certain value. So, this R a c max which is the maximum

Rayleigh number is 1 7 0 8 divided by half raised to the power of 4, which is basically

2.7 into 10 to the power of 3 this is the maximum Rayleigh number that you can achieve,

based on this x optimum. 

So, what we have done we have devised 2 equations, we have plotted the 2 equations.

So, whatever that area is enclosed by these 2 graphs, the area underneath those 2 graphs

is  basically  the  region  where  these  conditions  are  automatically  satisfied.  Then  you

choose the maxima that can happen in that particular region, which is happens at x equal

to 0.5 and for x equal to 0.5 you find out what is your Rayleigh a number?

So, that is all that we have done in this particular problem. So, this is how you would

actually solve it in using the partitions.
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Now, in this slide since, we have said for a long time that we will show the Rayleigh

Bernard. So, this is for example, a Rayleigh, a Bernard convection in a cell. So, this is

done using PIV. So, you can see that 2 counter rotating cells. So, this is rotating in this

direction this is rotating in this direction.

So, p iv rendition which clearly shows the flow vectors and if you go to the following

YouTube link that I have marked over here, you can also see that these are basically the

Rayleigh Bernard cells that you create see these are basically the cells, I am just marking

them out. So, you can see the cells very clearly. So, you can see in this kind of cells also

you can clearly see that you can see this Rayleigh Bernard cells and as you go higher and

higher in Rayleigh number this these cells becomes more and more chaotic in nature.

Go to this YouTube link to see the full video and if you want more quantitative data these

are basically particle image velocimetry data, which basically shows that how the flow

actually takes place between hot and cold essentially it is a hot and cold and this is of

course, Rayleigh number is greater than 1 7 0 8 so, it kind of matches with the problem

that we just now did all right ok.

So, the problem therefore, it is very easy when I say that there is really there is nothing

much to say about it except that this was the kind of problem that can be easily done

without doing much of a math. So, that is the whole point.
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Now, let us move to the question number 3 which we kind of said that we will do all. In

the last class and we did not. So, see if you read the question you will find that 1 way to

visualize the y to the power 4 1 forth dependence of the thickness of the laminar natural

convection  boundary  layer  is  to  execute  this  experiment,  which  is  shown  in  this

particular figure.

So, what we have is that you basically have a vertical isothermal wall, which has got a

temperature T w is equal to 20 degree Celsius that is the wall. It is not placed in contact

with an isothermal pool of paraffin, paraffin is like wax and the T infinity is equal to

thirty  5 degree Celsius.  Now the solidification of the point of the wax is  about 27.5

degree Celsius, well the solidification point of this wax which is called as tm which you

see over there.

So,  the  wall  becomes  covered  with  a  thin  layer  of  this  paraffin  that  is  what  will

happened?  So,  you have  a  wall  which  is  at  a  temperature  of  20  degree  Celsius  the

ambient essentially is at a temperature of 3 5 degree Celsius. This wall is covered with an

isothermal pool of paraffin all right paraffin, because it is temperature lies somewhere

between this ambient and a wall. So, it naturally freezes right freezes and it covers the

wall, it covers the wall with a thin layer of paraffin not completely melted and therefore,

and on the top of this you have the general airflow. So, this is the problem. 



So, this particular problem is used to visualize the y to the power 1 forth dependence of

the thickness of the laminar natural boundary layer that is the dependence that we have.

Now under  studies  what  we  have  to  show is  that  under  steady  state  condition,  the

thickness of the solidified layer L, this is the length L, it is proportional to the laminar

boundary layer thickness that is it increases in the downward direction as y to the power

of 1 forth.

So,  calculate  L numerically. So,  some of  the relevant  properties  are  given over  here

prandtl number is 55.9 the thermal conductivity of paraffin is that and the overall height

of  the isothermal  wall  is  H equal  to  10 centimeter. So,  this  total  height  is  about  10

centimeter. So, the idea is basically to show that the L, which is the thickness of this

solidified layer of paraffin this is the L, basically increases in the downward direction in

a similar way as a laminar boundary layer, which is a y to the power 1 forth.

So, this is the basic context of this particular problem that we are going to be. So, let us

do this. So, this is question 3.

(Refer Slide Time: 14:18)

So, let right q y double prime represent the local heat flux heat flux from right natural

convection boundary layer right to the solid, liquid interface right which is maintained at

a temperature of T m all right this is the solid liquid interface. So, q y right double prime

is given as K f by y T infinity minus T m nusselt number y correct.



So, y is measured in the downward direction in the downward direction. So, we can write

that y is measured direction. So, the same heat flux. So, whatever heat flux is coming

from the  natural  convection  boundary  layer,  the  same heat  flux  should  penetrate  by

conduction to the solidified layer which has got a local thickness of L y. So, the idea is

the same heat flux heat flux.

The same heat flux must penetrate by conduction conduction to the solidified layer, layer

of thickness L y. So, q y double prime basically given as K s tm minus T wall by L. So,

what we can do basically equate these 2 this and this right, basically you equate those 2

because whatever heat is coming from outside has to penetrate the solid wall.

(Refer Slide Time: 16:57)

So, solid layer thickness therefore, equal to is by K f T m minus T w T infinity minus T

m y by N u y. So, from table 4.2 which is from bejan and prandtl number is 555.9 that

was given the conditions 4.2. So, you can see that the nusselt number roughly scales as

or the relationship of the nusselt number is about by linear extrapolation on 4 8 7 into

Rayleigh number to the power of 1 fourth this is the same table, because I interpolated it

between at 10 and 100.

Because 55 is there in the middle. So, you can do with some kind of a linear interpolation

at that particular stage. So, therefore, or in other words. So, L K s by K f T m minus T w

T infinity minus T m y, then you substitute 0.4 8 7 Rayleigh number to the power of 1

fourth. It is just a substitution that is the substitution that you can do or in other words



this particular thing shows, you can do a little bit of more math l by H will be K s by K f

tm minus T w T infinity minus T m 1 by 0.4 8 7 Rayleigh number H to the power of 1

fourth y by H to the power of 1 fourth.

So, that is the scaling that we have established now. So, l scales basically as that as y to

the power of 1 fourth.  So,  the Rayleigh number based on the overall  height  will  be

because that is what we have done here as overall height and that was given to us T

infinity minus T m H cube alpha gamma. So, if you just plug in the numbers over here it

will be 1.3 9 into 10 to the power of 8 this is still in the laminar regime, which is most of

the time that is what we have done. 

So, L by H therefore if you back substitute it over here this will translate to something

like 0.0 4 5 y by H raised to the power of 1 fourth. So, that will be the expression. So, as

you can see what important concept we used was that, whatever heat flux is coming

through the natural convection boundary layer the same heat flux is transmitted through

the solidified layer. And we have just equated the 2 that is all that we have done and we

have shown that this L is basically proportional to y to the power of 1 fourth.

So, it exactly grows like the laminar natural convection boundary layer. So, that is the

important step that we have taken over here. So, this completes 1 of the set now we will

look at an interesting problem. So, let us look at the nature of this problem first. So, once

again say you have a bottle of beer at room temperature and you would like to drink it

cold and as soon as possible.
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So, that is the basic statement the beer bottle has a height to diameter ratio; that means, H

by D is approximately about 5 right you are placed the bottle in the refrigerator.

Now, you have 2 options you can place the bottle vertically or you can place the bottle

horizontally. The refrigerator cools by natural convection that is does not employ forced

recirculation,  which way should you place the bottle  will  it  be vertical  or  will  it  be

horizontal.  Describe the goodness of your decision by calculating the ratio t 1 by t 2

where t  represents the order of magnitude of the time needed for the bottle to reach

thermal equilibrium with the refrigeration temperature.

So, this calculation is supposed to be done based on scaling analysis. So, it is not just

beer any other soft drinks that you might have you always have, if you buy a can either

you can place, it vertically or you can place, it horizontally these are a high aspect ratio

remember the cans are usually high aspect ratio; that means, the height is more than the

diameter in this case it is given as 5 you can have other situations where it can be a lot

different.

So, it cools by natural convection. So, the idea is that how would you place it and this

you have to justify by taking the ratio of the time t 1 and t 2 which is needed to cool the

bottle down to it is thermal equilibrium. So, that is the problem that we have in this

particular case. So, let us look at the solution. So, this equation 6 for us.
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So, the scale of the cool down time. So, 1 case this is the bottle this is the can rather can

bottle whatever you can think of otherwise this right. So, this is your height H 1 and g is

acting in this direction this is your height H 2, which is placed in the horizontal position.

So, this is position 1 this is like position 2.

So, the scale of cooldown time. So, first is resort to the first law of thermodynamics

which states that d E by dt equal to minus Q b Q b to air, the rate of internal energy

transport. So, the cool down time is essentially. So, if you convert this equation now M c

b that is the mass and so this is d T b by d t is equal to minus h A T b minus T air.

Where basically a is basically the bottle area. So, this is basically the rate of change of

internal energy is whatever is a heat that is lost or the heat that is in this particular case

dumped, I think in this particular case yeah because the bottle comes to an equilibrium

with the refrigerator temperature and this is M c into b. So, the cool down time if you

write it is t scaling as M c b divided by h A this from just from the scaling analysis that a

t if you just take everything to the other side that is what you are going to get.

So, in other words so this particular factor this M c b by A only these part, it is basically

independent of the bottle or the can orientation. So, the t 1 by t 2 is basically a ratio of h

2 by h 1, that is the conclusion in general that will be the conclusion. Now what will be

this h 1 and what will be this h 2.
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So, 1 by h is 1 by h b that is the bare sight plus 1 by h air this is the air side. So, h b here.

So, there is air and then there is the liquid inside the bottle inside the can. So, 1 by H k R

a H to the power of 1 forth b and h air is given as 1 by H k R a H 1 forth air, because

both are by natural convection.

So, the same for the same delta T because your delta T is basically the same, because

your bottle and your refrigerator is kept at the same temperature difference so, h b by h

air. So, it is basically the ratio of the 2 if you take the ratio of the 2 it comes out to be

around 58.1. So, this means that hb is much much greater than h air. So, your 1 by h is

almost the same as 1 by hb.

So, essentially that is the case well I am sorry it is not also your hb is basically much

much greater than your h air. So, your h the overall heat transfer coefficient is basically

therefore, h of the air side all right because it is a 1 by h ratio. 

So, this is basically therefore, a constant into H raise to the power of 1 fourth. So, in

conclusion your t 1 by t 2 the time scale is h 2 by h 1, which is basically H 1 by H 2. So,

therefore, it is a ratio of the 2 heights essentially all right it is 1 forth it is about 5 to the

power of 1 fourth it is about 1.5 0.

So, the cool down in the vertical position requires a time that is 50 percent longer and the

cool down in the horizontal position. So, therefore, if you would like to drink the drink it



cold, you should choose your horizontal position essentially that is all right that it means

all right just through simple scaling argument. What we have done is basically you have

converted the heat transfer coefficient ratio into a geometric height ratio that is all that

we have done over here, by arguing that the h b and h air; that means, the hb is much

much greater than your h air.

So, therefore, the h is governed by the air side. So, that is all that we have done in this

particular problem. So, this particular problem is interesting, because it uses a simple

scaling argument to nail down the same issue. We have a couple of 1 more problem to

deal with and after that we will go to the turbulence see you next class.


