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So, we formulated the problem. Now, what Gill did not do at that particular point, he did

not go up to the energy equation that mean they do not solve for the Nusselt number. So,

we will look at the Nusselt number solution and then we will look at some of the data

that Gill actually predicted. 

(Refer Slide Time: 00:40)

So, the overall heat transfer rate if you look at it, it is q prime K minus H by 2; 2 plus H

by 2 minus  dt  by dx  x equal  to  0 dy. So,  basically  that  is  the  integration  that  was

performed and it comes out to be 0.364 delta T and Rayleigh number to the power of

one- fourth. So, that is the expression that we get.

Now, if we define the Nusselt number case in this particular way noting that majority of

the relationships basically depends on Nusselt number. So, the Nusselt number average,

average Nusselt number is nothing but the q prime divided by the q prime in the pure

conduction limit.  So, that is the Nusselt number. So, this will roughly translate to the

actual  q  prime  divided  by the  KH delta  T divided  by L,  L being  the  width  of  the



enclosure. So, it is basically if you have like a constant diffusive type of a heat transfer

that will be what it will be, right.

But,  on the other side we are interested more in this.  So,  basically  this  translates  to

because you already have that q 1 now fetched from here. So, it will be 0.364 L by H

Rayleigh number to the power of 1-fourth. So, that is the average Nusselt number that we

are getting over here. So, that is the average Nusselt number.

So, now we can look at now that we know that the Nusselt number we know, what it is

going to be in the high Rayleigh number limit this is the Nusselt number, but there is a

lot of confusion regarding this particular aspect of the result. So, the result is particularly

significant that is because you know that when Gill actually solved these 2 equations that

is d bar dq bar by dy bar, he used what we call an arbitrary condition. So, let us write that

arbitrary condition. 
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So, when he solved for, when Gill solved for p bar and q bar basically. So, that is what he

used. So, when he integrated this in this expressions; he integrated these expressions

numerically of course, numerically and determine the constant c, the constant c is this

constant, this constant over here. So, that constant c and determine constant c from the

arbitrary condition that the vertical velocity at the 2 corners. So, which is basically y bar

equal  to  plus  minus  half  those  are  the  2  corners  is  0.  So,  this  he  called  as  the

impermeable limit, he called this impermeable.



But,  however,  there  is  a  lot  of  argument  regarding  this  because  the  boundary  layer

strictly the assumption strictly does not hold when you go to the corners, the corners of

the of the enclosure. So, it is only v bar, the scale of v bar or the expression for v bar is

only  valid  in  the  boundary  layer,  so  not  at  the  corners.  So,  there  is  some  dispute

regarding that, but whatever we showed before this is based on gill's assumption that he

solved for p bar and q bar by using numerical integration and he determined the constant

using the arbitrary condition that the vertical velocities at those 2 points are basically

equal to 0, in those 2 regions are basically equal to 0.

Now, what we are going to show is some data in which we are going to plot T bar and the

stream functions. So, is stream functions is nothing but the velocity field, as you know

the velocity is always tangential to that stream line. 

(Refer Slide Time: 05:35)

So, we are going to show these 2 results and this is taken from that Gill's work.



(Refer Slide Time: 05:37)

So, if you look at this now. So, these are the stream lines, so these are the isotherms and

these are the corresponding stream lines that you have seen an enclosure of that sort. So,

this is from A. E. Gill Journal of Fluid Mechanics very long time back, this work was

done very, very long time back. 

So, you can see, so this is the core region, these are basically the mounted there; so the

core region lies somewhere there. So, you can see from this particular expression. So,

this is what the isotherms looks like and this is what the stream functions looks like after

solving the equations that I wrote, equations numerically. It is not a complete numerical

model, but the integration and other stuff are done numerically. So, and from this it was

further extended by Bejan and others in which they calculated now the heat flux or the

heat transfer rate using this expression. So, that was what we coated in this particular

here, this is what we coated here, so that was the Nusselt number that Bejan found out

and what they were built up on that condition.

So,  Bejan actually  did,  so this  was done by Bejan.  So,  he proposed something as  a

substitute for this impermeable limit where y equal to plus minus half, the wall was taken

as impermeable. So, Bejan proposed and condition of proposed a condition of 0 energy

flow or net energy flow rather 0 net energy flow that is by convection and conduction

through  top  and  bottom wall.  So,  it  basically  takes  into  account  the  adiabatic  wall



condition as well as the same time it takes into account the impermeable limit as well

what Gill actually did.
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So, what happened was that his qy prime it looked something like this rho cpvT minus K

dT by dy dx is equal to 0 at y equal to plus minus half or plus minus H by 2 this non

dimensional  space.  So,  this  basically  is  both  impermeable  plus  adiabatic,  it  kind  of

encompasses both the conditions; that means, you use both the parameters. So, the result

that he got is actually shown in here.

(Refer Slide Time: 08:50)



So, if you look at it  here, it  goes to 3.64 what Gill got,  but it  is at as a;  it  emerges

basically as a limiting condition, it emerges somehow as a limiting condition actually the

numerical coefficient of the factor because you see here it has been normalized by LH by

Ra H to the power of 1 fourth. So, basically if you understand what Gill did or from gill's

work what people found was 0.364, L by H Ra H to the power of 1 fourth. So, if you

divided up by this you are supposed to get this factor only, which is what you get in the

large limit in the limiting conditions.

However, here you can see that it is a trajectory which seems to be a like a function of

this, that is what you are trying to get. So, the numerical coefficient in you see Nusselt

number bar L by H Ra H to the power of 1 fourth relation is a; so, this Ra H by 1 fourth

relation is no longer 1 single constant value. So, it is basically is a function of Ra H to

the power of 1 by 7th; H by L to the power of 4 by 7. So, that is kind of the relationship

that you get because that is what the factor is over here.

Only in the limiting condition we can see that it goes up to about 0.364 over here. So,

that is the case that we see over here, so this you can remember, this is not very simple

like what Gill did; it not very simple in that particular way.

Now, what people have done is that people have done a survey of different types of

solutions that are available. So, you can look at this particular graph for example.
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So this is for example, some of the theoretical Nusselt number with experimental work

and experimental correlations basically take from reference and 28. So, here you can see

that the agreement usually between the Nusselt number, I mean the agreement between

the correlations. So, agreement between theory and correlations is excellent particularly

near  L by H Ra to the power of  1  fourth is  about  10,  so right  around here,  in  that

particular regime the relationship between the correlation and the experiments are kind

of good because this is the line of Bejan, these are the 2 lines the rest are all different

types of theoretical data.

So, around 10 this is particularly good the relationship as you can see over there, but

there is a considerable variation below and above; above and below this particular thing.

So, the main thing is that if you look at below this range, so at this 10 value is where the

boundary  layer  assumption  is  particularly  good  look  it  right  above  this  range  the

boundary layer. So, above this range the boundary layer becomes turbulent or at least it

tries to transition to turbulence and below this we have what we call the pure conduction

limit starts to kick in; conduction kicks in.

So, the match is kind of very good at around 10. So, below this and above this you have

all  these other factors that plays an important role over there. So, this  is particularly

useful task where we have reviewed some of the important work and we have analyzed

the problem we showed how it can be solved, at the same time we have taken some

liberty  with respect  to some assumptions,  at  the same time we showed that  the heat

transfer part is not that simple as far as what Bejan showed and what Gill showed. For

example, is not very simple it is not a universal one, it does show a little bit of variation

with  this  depending on how you are  analyzing  the  problem.  So,  depending on your

impermeable wall or adiabatic wall it kind of gets a little messy.

But, at the same time, but it starts to become constantish after a certain range. So, that

part  is  particularly  useful  and  you  should  remember  that  and  also  if  we  show that

theoretical  agreement  between  the  different  experiments  and  between  the  different

theoretical results and this, you will find the agreement is particularly good for around 10

and then it starts to deviate as we go to the other limits. So, in this particular fashion we

stop the at the Rayleigh number; high Rayleigh number limit before we go to the shallow

enclosure limit after this because shallow enclosure limit is other end which is regime 4

basically.



So, let us look at a regime 4 now. So, next thing that we are going to look for is regime 4

which is basically the shallow enclosure limit. So, it is in this particular regime if you

look at  it  the  thing  looks like  this,  very  distinct  boundary  layers  once  again  on the

vertical sides. So, here the HTR or the heat transfer rate still scales as K delta Tf H delta

T still the scaling is that, in addition you have additional insulation provided by the long

horizontal core of the cavity. So, this is a shallow enclosure limit, the heat transfer rate is

given by that,  additional  insulation  provided by the  long horizontal  core.  So,  this  is

basically the core that is what you are getting.

So, first we focus on the core region and that is all that we are going to do.

(Refer Slide Time: 17:10)

Focus on the core region that is the important part, where in the code region which is

sufficiently away your x scales as your L and your y should scale as H because you are

sufficiently away from the boundary layer. So, it is basically we are sufficiently far from

both vertical walls got it. 

So, basically; now, since your H by L is actually going to 0 because that is what the

shallow enclosure limit  is  that  your H is  much, much smaller  than your L,  that  is  a

shallow enclosure; shallow enclosure limit. So, therefore, if we write the different scaling

from the continuity you will get u by L is equal to v by H that is a first scaling, then from

the energy equation you are going to get the second scaling. So, this is convection and



this is the vertical conduction, remember this is vertical conduction that is why the H the

height has been taken into consideration over here.

Similarly, if you look at the momentum equation it will be u squared H by L or gamma u

by H cube, I will write what these things are g beta, delta T by L where this is basically

your inertia, this is basically your friction and this is basically your buoyancy. So, these

are the 3 terms that you would normally get in any situation like this.

 (Refer Slide Time: 19:24)

So, at this point we can take a look at the figure 5.9 over here, which basically gives an

illustration of this particular problem again taken from page 1. So, this is the warm site,

this is the cold site, this is u, this is v all the things remains the same; this is the gravity,

this is the core region, this is the end region. So, as you can see the end regions are really

thin it is a core, it is at core which is very dominating over here in this particular case, the

height is really small compared to the length, so the length is L which is given over here.

So, this is the basically the schematic of the problem. So, and this is basically what we

are analysing here. So, I wanted just you to take a look at this.
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So, the question that remains that, what are the scales of u and v?

(Refer Slide Time: 20:16)

So, first option could be that friction is being driven by friction and buoyancy balance,

the second one which could be inertia by buoyancy, buoyancy will be there regardless

because that will be the driving factor regardless of what you whatever you do, these 2

terms remains the same.

So, for H by L tending to 0, where you have a very large core it is usually the friction

which will balance the buoyancy, you are encouraged to look into the past notes to find



out why that is the case and u scale of u will be g beta H cube delta T by gamma L where

the scale of v will be g beta H to the power of 4 delta T by gamma l square, so these are

the 2 scales for u and v. Now, what we can do is that we can take this u and v values and

you can  substitute  them in the  governing equations  right  the scales  that  we actually

determined over there. So, what will happen if we substitute them in the energy equation

this will become g beta H cube delta T by gamma L, delta T by L scales as alpha T by H

square this will become therefore, HL square Ra H scales as 1. So, this is basically once

again the vertical conduction.

Similarly, from the momentum counterpart what we are going to get is H by L square Ra

H by prandtl number given as 1 scaling on the other side is 1. So, this is basically your

friction, this is basically your buoyancy and so these are the things. So, these are the 2

things as you can see H by L goes to 0 because it is like a shallow enclosure, this term

basically goes to 0, this term basically goes to 0 which is basically this was the inertia

term anyways. So, it is basically a balance between friction and buoyancy all right. 

(Refer Slide Time: 23:23)

So,  now  for  the  core  region,  so  you  can  understand  this,  now  for  the  core  region

following dimensionless variables are defined. So, 1 is basically (Refer Time: 23:45) uc

for core g beta H cube delta T by gamma L it is a first quantity v c g beta H 4 delta T by

gamma L square; xc is equal to x by L; y c equal to y by H; t c equal to T minus T cold

divided by delta T; t cold and T L we already defined in that diagram, delta T is basically



given  by  T warm minus  T cold,  got  it.  So,  for  the  core  region  these  are  the  non-

dimensional variables that we have defined and this is the generalized form.

Now, we  can  do  is  we  can  substitute  all  these  quantities  into  our  basic  governing

equations. So, the continuity will become, that is the first let us take the next page for the

momentum equation.
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So, equal to epsilon, we will explain what epsilon exactly means. So, epsilon plus, so,

similarly the energy equation now, where the epsilon is basically H by L square which is

much, much less than ha 1. 

So, what we will do in the next class, we will try to see how this equations are typically

solved, we would not solve them because they cannot  be solved in the conventional

form, but we will solve a few and we will try to show you that how this data actually

looks like.


