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Internal natural convection- Scaling analysis

Welcome. In today's lecture, we are going to cover we are going to start with internal

natural convection. Now, internal natural convection is a very common phenomena and

is a very important and a challenging task also. For example, anybody wants to design a

room like, the one that you in your house. Any auditoriums, any buildings, things from

solar collectors, all the way up to fluid mechanics phenomena’s like Rayleigh Bernard

convection,  all  this  involves  basically  natural  convection  in  enclosed  cavities  or

enclosures, as we call it.

So,  we will  focus  in  our  discussion  in  this  class  and beyond;  this  is  natural,  this  is

internal natural convection. So, that would be the topic of today; that internal natural

convection that is what we are going to focus on.

(Refer Slide Time: 01:15)

There  are  2  types  of  natural  convection.  You can  have  scenarios  where;  the  heat  is

supplied from the side walls. There can be scenarios where heat is supplied from the

bottom. Now, side walls where heating is from the side; side wall heating. Now, when

you are heating it  from the side these are this is applicable in applications like solar



collectors.  For example,  very classical  problems in solar collector’s air  circulation in

buildings.

When you do a  room design,  as I  said,  if  you want  to  do an auditorium design for

example then double wall insulation, the bottom cavity that particular kind of problems

has got other applications also. One of the very famous appeal, one of the very famous

phenomena you can say either Eddy Bernard’s convection. So, that is very common in

the fluid dynamic power bonds that  you get the (Refer Time:  02:42)  Bernard or the

Bernard flow or convection.

So, that happens when you actually have this kind of an arrangement. So, it is a very

common problem and it is useful in a multitude of applications, but how to attack this

problems, is what we are going to do in the in the next few classes.

So, let us take the problem with the side wall heating. And we will focus more or less on

this side wall heating. And we will try to first analyse this problem in the next slide. So,

as we say it before that, we want to see both the transient as well as the steady-state.

(Refer Slide Time: 03:39)

So, basically you have transient heating from the side; will resort to the scaling analysis

as we did earlier. So, let us draw the cavity. So, this is a standard cavity that we have

drawn. The length of this cavity is L; that means, between the 2 walls it is L and the axis

over here is this is your x; that is your y axis, the height of the cavity is basically H. So,



this  is  an enclosed cavity now. H by L can be any ratios that  we will  see how is  it

dependent on H by L type of ratios. This is the gravity, the direction of gravity. So, what

happens is that let me draw a simple schematic? This is basically your delta T. This is

basically something like a delta. This length scale is small l. So, basically the flow is like

this. And this part has got a temperature of plus delta 2, delta T by 2. This has got a

temperature of minus delta T by 2. So, this part is hot, this part is cold. And the velocity

scales are as follows this is u, this is v.

So, apart from this, this is insulated, this is also insulated. So, it is adiabatic on 2 sides

top and bottom. Only the sidewalls of a left and right walls are heated. One part is heated

one part is cooled by an amount that delta T by 2. So, we are interested in the transient

behaviour. So, what is the transient behaviour  of the cavity fluid,  right? What  is the

transient behaviour of the cavity fluid when the side walls are heated and cooled, right?

All of a sudden to heated by plus delta T by 2 cooled to minus delta T by 2, got it where

the top and the bottom walls are actually insulated. So, initially, the delta T was equal to

0 at t equal to 0 minus. So, just before the initial time, the entire cavity did not have any

thermal gradient going inside it at all, right? So, that was the situation. And based on this

situation, now we are supposed to analyse this particular problem. 

So, that is a simple enough thing, we are interested in this transient behaviour. We are

interested in what happens immediately after you start doing this. So, based on this, so

normally what we would do, we would write down the equations of motions and energy

first and then we will see how to analyse the problem. So, this part is a very important

diagram, which basically shows you that how the flow actually is happening, how the

circulation is taking place. And we are interested in these parameters right, delta T; one

of the crucial parameters, what is the velocity scale how delta T is growing, all those

answers.
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So,  let  us  look  at  the  equations.  So,  the  conservation  equations  are  as  follows;  as

continuity, I am retaining the transient terms because, that is what we are going to do

here the 2 momentum equations x and y right. So, these are the 4 equations that we are

interested in, we note that we have modelled the fluid as we said earlier, as boussinesq's

in incompressible; that means, that the change in density only comes in the body force

term and not everywhere the rho is constant rho is constant everywhere except in the

body force term y momentum equation, that is an important thing this we already have

explained earlier. So, this is no nothing new just to reiterate that that is what we did.

Now, instead of solving all these equations now what we are going to rely is we are

going to rely on the scaling arguments.
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So, let us look at the situation immediately after t equal to 0. So, after immediately after t

equal to 0, the fluid which is on the, which is basically adhering to the side wall each

side wall is basically motionless. Just immediately after t equals to 0, we are assuming

that a fluid bordering each side wall side wall is basically motionless; that means, when

you look at the energy equation, the balance between the convection term is no longer

important It is basically, the inertia thermal inertia or the unsteady term which should

actually balance with the conduction normal to the wall right.

So; that means, if you put it in that particular context, this will be important because, this

is the transient term. This should balance all right. So, it is a balance between thermal

inertia balancing the conduction normal to the wall conduction normal to the wall. So,

this is the scaling that we have put forward; obviously, recognizing that this square T by

dy square term is much, much smaller than x square term. 

So, because at t equal to 0 plus what happens is that the thermal boundary layer thickness

delta T is much, much smaller than the enclosure height H and we already know that y

should scale as H and x should scale as delta T right this was already kind of known

right. So, boundary layer thickness is much much lower than the or the boundary layer

thickness is much smaller than cavity height right. So, that is an important statement.

And so, from immediately this particular equation, following t equal to 0 plus right, each

wall each sidewall is coated with a conduction layer right because it is a conduction



balance basically where the delta T basically scales as alpha t to the power of half, very

much  like  a  diffusion  problem  you  have  seen  this  earlier  in  your  unsteady  heat

conduction equations where, because, what we have said here, that a layer is motionless,

but this heated layer now grows because of pure conduction with the rate of alpha t

raised to the power of half.

Now, as this layer starts to heat, as this layer starts to heat, this delta T, there is a velocity

scale that is trial that now gets imposed right, a velocity scale automatically originates.

So, so as these layer as this heated layer this is a heated layer right heated layer delta T

rises along the wall upward velocity v is induced. Now, we need to find out what will be

the scale of that. 

So, inertia conduction driven velocity has just started to come in right. So, understand

that nature of the problem that, first it is a conduction driven problem immediately after

time, with as time marches on you, induce this velocity scale fundamentally because, you

have now have a heated layer which kind of rises now against the wall.

So, buoyancy starts to play a very important role in order to find that scale, what we do is

that we eliminate pressure p.

(Refer Slide Time: 16:34)

Between the 2 momentum equations all right, we eliminate the pressure. So, based on

that we get, so you can see, there are 3 basic groups in this particular equation. You have



all the terms on the left-hand side of this equations are basically the inertia terms correct;

inertia terms and the four-viscous term, but plus the buoyancy term on the right-hand

side; that means, these are all friction and this is basically your buoyancy.

So now, we can it is possible for show and this you can actually try to do it is that only 3

terms dominate in this basic group. So, the first term that dominates is basically this and

the second term from the friction part and of course, the buoyancy is a single term event.

So, this is  basically  your inertia,  this  is  basically  your friction,  this  is basically  your

buoyancy. So, these are the 3 terms we would normally associate if you do an order of

this equation. So, you will find that these are the terms which are the dominant terms in

this particular series.

Now, if we just put their corresponding scales, now into the picture soo, one will be v t v

and delta T into t right that is the first term then of course, you have gamma v by delta T

cube this of course, balances with gb delta T by delta T right. So, these are the 3 terms

that in their scaling argument. So, buoyancy is of course, the driving term no matter what

right, it is a driving term which is definitely not equal to 0. So, therefore, what we can do

is that, we have to find out that whether buoyancy is being balanced by friction or by

inertia  like  we  did  in  our  external  natural  convection,  if  you  recall  that  particular

problem.

Now, what we can do is that we can divide it by the friction scale all the terms and let us

try to see how what evolves as a result of it. So, this definitely becomes of the order one

now; because of the division. So, this becomes v delta T into t delta T cube gamma into v

this becomes g beta delta T by delta T delta T cube by gamma into v.



(Refer Slide Time: 20:49)

So, in the next one, so, the inertia now becomes 1 over prandtl number, friction is of the

order one, buoyancy the scale against g beta delta T. So, these are the 3 terms in a series.

Therefore, for fluids which has got prandtl number greater than one that kind of a fluid

situation right therefore, it is a balance between friction and buoyancy. So, at t equal to 0

plus; that means, as this velocity scale starts to pick up you have a balance between

friction and buoyancy which is g beta delta T delta T square and gamma v right ok. 

You already know that, your delta T is scaling as alpha t to the power of half that we

derived just earlier or. So, therefore, all these things leads to v scale as g beta and delta T

alpha T divided by gamma, valid for prandtl number greater than one, closely valid for

prandtl  number  almost  close  to  one,  marginally  valid.  Marginally  valid  for  prandtl

number greater  than one it  is  of  course,  valid.  So,  this  is  the velocity  scale  that  we

induce. So, this is the velocity scale of the first fluid movement is given as that.

Now if we go back, now to the energy equation, now the heat that is being carried. So,

previously the energy equation we neglected the convection term right.
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Now, if we're turning to the energy equation to energy equation, what we can show is

that, the fluid layer delta T that the heat that is transferred is no longer going into just

thickening of this delta T right, it is also being taken up by the layer delta T which is

moving up with a velocity v right. So, the heat is spent not just by layer thickening got it.

So, it is also based is carried then it is not just and it is also being carried by the velocity

v. So, therefore,  naturally  in the energy equation,  we now have a competition of the

convection term also remember previously we neglected the convection term.

Now, once again, so, in the energy equation we have delta T by t the convection term is

given by v delta h by h and conduction term alpha delta T by delta T square this is a

balance  between these 2 right  and whatever  gets balanced by whatever. So,  as the t

increases the as with time because, if velocity we saw, so, the velocity scale that we saw,

was  proportional  to  t  right  that  is  what  we  derived  just  in  the  previous  slide  it  is

dependent on t linearly right.

So, as time goes on, it is expected that the velocity scale should go up. As a result of that

the  convection  term  should  become  more  and  more  important  corresponding  to  the

inertia term or the conductor corresponding to the inertia term. So, naturally what we can

do here. So, it slowly becomes important. So, there comes there comes a time t f when

the energy equation expresses a balance between heat conduction and enthalpy carried by



the  by the vertically  moving buoyant  layer  got  it.  So,  it  will  be there  for  a  balance

between delta T by h balancing alpha delta T by delta T square right.

So, based on this and knowing that the expression for v we can find out that what is this

time scale t f is all about.

(Refer Slide Time: 26:40)

This yields t f is it is not v is that is gamma delta T into alpha raise to the power of half.

At that time, remember your delta T is alpha t f to the power of half right at that point of

time this would translate to H into Ra H minus 1 4th where your Ra H is given as g beta

delta T H cube by alpha r right. So, so there is a time t f at which your convection term

equates the corresponding heat conduction term in the energy equation and at that point

of time, the value of the thermal boundary layer thickness scales as H into RaH to the

power of 1 4th.

So, you end here in the next class, we will see that how the velocity boundary layer

actually takes it is form.

Thank you. 


