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So,  in  the  last  class,  what  we  did  was  that  we  for  understanding  this  thermal

stratification. If you recall the problem that it was still that vertical plate and one thing

that happened was that the temperature of the ambient actually increased from T infinity

zeros to some T infinity, H if you recall so which decreases basically the heat transfer

potential. So, this is obviously we say it is going to be greater than this. And we define

parameters  which  basically  convey  the  meaning  of  this.  So,  our  definition  by  our

definition  y  was  equal  to  y  by  H  if  you  recall,  just  consult  your  notes  delta  was

normalized by H R a H to the power of minus one-fourth. V bar is given as a V divided

by alpha by H  a Rayleigh  number H to the power of half;  and b which is basically

signifies what is the increase in basically the room temperature or the ambient. So, this is

given by a  non-dimensional  parameter  b,  where we said that  as  b  goes  up,  the heat

transfer actually decreases right. So, up to this point we did.

Now, we also cast the integral equations if you recall from last class that we cast both the

energy  as  well  as  the  momentum equation  in  integral  forms.  Now, we substitute in



momentum plus  energy equations,  so  in  a  nutshell  what  we get  is,  so  these  are  the

expression, this is the first expression, this is the momentum obviously. Then comes the

energy equation. 

So, these are the two expressions that we get. And of course, your wall heat flux is given

as k dT by dx computed at x equal to 0 right that was what it was. Now, what will happen

is that now if you do the integration right I mean you solve this equations keeping the

variables in consideration and your main target is to find out what is going to be that q

double prime that you have over there.
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So, if you do it so the q double prime will come out to be let us go to the next one. So,

the q double prime will be given as K T naught minus T infinity naught divided by H R a

H to the power of minus one-fourth 2 by delta 1 minus b y bar, this is delta bar, so that is

the expression that you get. So,  naturally your Nusselt number this is the local Nusselt

number is given by this right, so  that will be nothing but R a H to the power of one-

fourth 2 by delta bar 1 minus b y bar. So, these are the two expressions that you are going

to get for q double prime and Nusselt number.

Now, the Nusselt number of course, if you have to find out the average Nusselt number

which is from 0 to H right, you need to basically integrate the whole expression. So, this

is one-fourth to integrate it from 0 to 1 2 by delta bar 1 minus b y bar and d y bar right,

so that is the integration. Now, for Prandtl number approaching infinity this value of the



Nusselt number o H approaches something like 0.324 into Rayleigh number to the power

of one-fourth, if Nusselt number approaches infinity.

So, this kind of this from the integral formulation if you do more sophisticated numerical

exercise on this, you will find that there is almost 11, this is close to almost 11 percent of

the  more  you  know  what  we  call  formidable  and  more  complicated  analytical  or

numerical formulations in a stratified enclosure alright. So, as you can see that obviously

your Nusselt number if you look at this particular expression, so  as you change b, the

Nusselt number actually changes accordingly, the Nusselt number change. 

So, previously this b was not there. So, if b is equal to 0 say for example, there is no

gradient, so you basically recover back the original value. But here, however, since b is

there,  so  depending  on  the  value  of  b,  your  Nusselt  number  is  going  to  be  altered

accordingly, so that is the most important part that you should kind of note.
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We also would like you to look at the generalized expression over here. So, these are the

graphs that were plotted taken from Aderene Bejan. So, what we can see over here this is

once again the same thing that we did. So, once again you can see this is the parameter b

this is the extent of stratification what stratification has done. And what we have done

over here is that we have taken the Nusselt number average and we have multiplied it out

by the Rayleigh number to the power of minus one-fourth. So, you will  be left  with



basically whatever is the b dependent term, b and y dependent term right, so that is then

we have plotted it versus b.

So, as you can see when b is equal to 1, let us take first b equal to 0, b equal to 0 means

there is no stratification at all. So, when b is equal to 0, you basically get back all your

original settings, what you had earlier, those were the graphs that you had earlier. But as

we move on to b equal to 1, b equal to 1, so that means, higher and higher values of b

which would imply that your gamma that you have pointed out over here that is going up

that  means,  the  slope  is  actually  going  up that  means  this  extent  of  stratification  is

increasing quite a bit. So, naturally you see that there is a decay in your Nusselt number

value which is kind of expected.

So, for Prandtl number approaching infinity this we already said was about 0.324. For all

the Prandtl numbers this particular value actually comes down quite a bit as you can see

from 6, 7 all the way up to about 0.324. So, it is a loss of almost half the value. So, all

the graphs actually show that for several orders change. So, this is Nusselt number 0.6,

so it is one order. This is six and this is infinity. So, all of them show that this is how the

numbers actually decrease, but it is highly a little bit non-monotonic in nature as you can

see. Of course, this shows the largest drop followed by this and followed by this. So,

something that you have to, so there is no real similarity in the pattern per say. So, there

is a only thing that we can say that there is a gradual decrease in Nusselt number as the

stratification degree which is b actually increases. So,  in the isothermal reservoir limit

they fall slightly below the corresponding results of square, square was a more analytical

solution.

So, in all we can say that there is no local similarity as such, but we can say for sure as

expected  that  there  will  be  a  decrease  because  stratification  is  reducing  the  delta  T

potential so to say. It is reducing the delta T potential for this particular system. So, if b

as you can see is gamma H divided by T naught minus T infinity naught, so that can be

also written as 1 minus delta T minimum by delta T maximum. So, something like that.

So,  as this delta T minimum actually goes on, goes on, goes on changing, so  we will

have that the b parameter will increase and naturally this will hurt in the amount of heat

that is coming from the wall to the fluid. So, this is not unexpected.



Only thing that is here that we have provided some fixed values based on the integral

analysis  that we just did.  And it  is like we already established that what will  be the

temperature profile  what will  be the velocity  profile  and things like that.  But it  is  a

simple substitution, but we are able to predict the slopes. And these slopes are not like

these might look a little linear this looks like this has got some kind of a parabolic or a

power law kind of dependence or polynomial kind of a dependence in this particular

case.

So, let us move to the other one. So, based on this, it is quite obvious now that we have

been able to say that what would. So, just remember these values, this is the local Nusselt

number, and this is basically the average Nusselt number. So, these two things must be

kept in in your mind when you actually attack the problem. So, let us now look at the

situation where the two vertical walls  are basically a little bit closer to each other. So,

this problem is an interesting problem in the sense that it is applicable in a wide variety

of applications ranging from fins, electronic cooling because where the two walls I mean

the two fins may be placed very close to each other.
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So, before looking at it, let us look at what I am actually talking about. So, let us look at

this particular profile. So, as you can see that this is the normal vertical wall that we were

actually dealing with. What happens if you place another vertical wall right next to it?

Now, if  the distance  between the two walls  is  much,  much greater  than the thermal



distance  or  the  thermal  boundary  layer  thickness which  is  delta,  delta  T  or  delta,

whatever you call it.

If they are sufficiently placed far apart, so  what do you expect to get, you expect that

these two velocity profiles will remain almost distinct with respect to each other alright

throughout the length through which they traverse. So, these are the wall jets right. So,

these wall jets will remain distinct from each other, very distinct from each other, they

would not cross talk with each other because of the simple reason is that the distance

between the walls is sufficiently far apart. They are actually sufficiently far apart.

Let us look at the scenario two when the distance between these walls are very close to

each other alright, they are very close to each other, that means, these two velocities will

now start to cross talk. So,  by cross talking we essentially mean that they will kind of

merge right, and you get a very similar velocity profile like what you would normally

expect in a duct right in the forced convection paradigm. So, the flow will be like that,

there will not be any distinct, you would not be able to distinct the two wall jets, they are

basically cross talking with each other.

And similarly, so you can see what happens when you actually have the temperature

profile  distinct  versus  not  so  distinct. So,  in  these  cases  also  as  we  know that  the

boundary layer takes a little bit of time to develop right that is the same as in the case of

a  pipe  flow or  any other  flow right,  the boundary layer  takes  a  little  bit  of  time to

develop. So, there must be some kind of an entrance length right before these two layers

actually  merge  with  each  other  must  be. So,  you  mean  to  say  that  there  should  be

something like this  probably right,  before these two layers actually  merge with each

other and that merging length is given by this parameter which we call as y T, see it is y

T is the parameter which governs this.

So, let us now see that how we can analyze the problem. In the case of a duct flow,

remember  it  was  a  pressure  driven  flow. So,  there  was  a  pressure  head  which  was

actually  maintaining  the  flow  right.  Here  of  course,  it  has  to  be  the  temperature

difference. So, the temperature difference creates a flow which resembles which kind of

mimics right what we actually see in a duct. And actually whether the velocity profile

will be parabolic or not that we will see shortly, but in a nutshell if these two profiles

merge,  they  will  look  something  like  that but  there  would  be  similar  to  the  forced



convection counterpart. There will be some kind of a merger of the two layers and we

will see how to analyze a problem like this.

So, let us go to our little notes. Now, so having laid down the problem and this is widely

used in the case of electronic cooling and things like that. In fact this is one of the key

pieces of design parameter that one would normally use, because when you try to design

a coolant a cooling circuit right, fins especially in your computers and other things. And

if you are relying on forced convection to do the effect, then how these two layers are

cross talking with each other, and how the heat is actually transported it forms a large

part of the problem. So, it is very characteristic of vertical fin to fin cooling channels in

electronic equipments remember that in mind.
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So, cooling channels cooling channels in electronic equipments in electronics it can be in

other cases also, specially this era of you know micro scale cooling or micro cooling all

those things can be very important and micro cooling using you know micro to mini

channels. These are all very, very important over here. Now, let us now take the flow part

and try to analyze the problem. 

So, the problem essentially boils down is that this d which is the separation between the

two plates is small, D is small. And if this is the axis let us define the axis, this is your x,

this is your y. So, this is naturally this portion is basically D by 2; and obviously, these

two layers merge with each other. So, all those things are very similar to the pipe flow



situation. So, this is given by u, this is given by v alright, so that is the way that we have

always defined it.

So, the momentum equation, if we write the momentum equation, it will be rho dx plus v

and dv dy minus dp by dx plus mu, this is the momentum equation. So, similarly looking

at this particular kind of a velocity profile what we showed right like that, we showed the

velocity profile of course, this is the peak. The velocity profile that we showed, we can

safely assume that perhaps your v that is the velocity in the vertical direction is not a

function of y, it is very similar to the fully developed assumption, and your u is basically

equal to 0. All this comes from the fully developed flow assumption, all this comes from

the fully  developed flow assumption that  v is  not a function of your y and u is  the

actually equal to 0.

So, similarly dp by dx this we already established earlier it is like a hydrostatic head that

we develop. So, this will become that is the only term that is remaining. So, there is of

course, gravity here, because gravity is always important right in this. So, as you can see

of course there is no pressure gradient, but you have this hydrostatic and this buoyancy

driven flow essentially  which is  basically  trying to balance this  viscous term, this  is

nothing but  the viscous term right.  Very similar  in origin very similar  how we have

actually analyzed the problem that v is not a function of y and u is equal to 0, this is our

standard definition of fully developed flow, that means, the flow is convectively non

accelerating, so that is what we did earlier alright.
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Now, using  our  Boussinic  approximation,  if  you  recall  the  Boussinic  approximation

where  we said  that  in  the  convective  part  it  usually  is  the  constant  density  and the

variation  only  happens  in  the  buoyancy  part,  remember  that  was  what  Boussinic

approximation  was.  So,  using  Boussinics  approximation,  this  particular  problem

therefore, becomes unsolvable when you write it like this, because it is g beta by gamma

into the T minus T infinity is generally an problem which cannot be solved because you

have velocity as an unknown, you have temperature as an unknown.

So, what we need to do is basically you need to couple it with your energy equation, and

solve it kind of together right, together you have to solve these two equations. But  of

course,  this  particular  expression  is  equivalent  to  the  Poiseulle  flow  to  the  Hagen

Poiseulle  flow in  forced  convection. So,  it  is  equivalent,  but  this  natural  convection

equivalent of the Hagen Poiseulle flow, but it is cannot be solved in such a nice way as

we did in the case of your Poisseulle flow.

So, what we have done, what we can do over here is that if we assume thus T minus T

infinity, we assume that this particular thing almost equal to T naught minus T infinity.

That  means how what we have done,  we have got rid of the problem of T minus T

infinity and we are substituted it by a constant head temperature difference like T naught

minus T. So, this T naught minus T that is what we have done we have approximated the

temperature difference by this. So, this is approximated the temperature difference.



So,  moment  we  approximate  the  temperature  difference  then  the  problem  becomes

solvable that is because your equation now boils down to minus g b gamma  T naught

minus T infinity. So, you can apply your first integration this is g beta by gamma T

naught minus T infinity x plus c 1. Now, since you have dv by dx is equal to 0 at x equal

to 0, which is basically the centre right, this should ideally lead to c 1 to be equal to 0 as

well, so  that will lead to c 1 to be equal to 0. So, similarly, so therefore, your v now

becomes g beta T naught minus T infinity divided by gamma x square by 2 plus c 2.
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Now at x equal to D by 2, that means, at the wall your v should be equal to 0, because of

the no slip condition this leads to your c 2 to be equal to g beta T naught minus T infinity

divided by gamma x square by 2. So,  your velocity therefore, your velocity  becomes g

beta T naught minus T infinity divided by 8 gamma T naught minus T infinity T naught

minus T infinity sorry this T naught minus T infinity and there is a D square here 

So, in this particular case, as you can see this is basically the driving mechanism, this is

basically what is your driving mechanism right. So, like in the pressure head, we had in

this  particular  case this  is  basically  the driving mechanism of the  flow. So, we have

established what is the velocity scale going to be, now it remains to calculate what is the

corresponding heat, and what will be the corresponding you know the Nusselt number

and stuff like that.



So, let us look at that in the next class. So, here we have established up to the velocity

scale of the problem.

So, let us see that how the Nusselt number, and the heat release comes into the picture

when the two plates are very close to each other, and they are cross talking with each

other, so that the two flows have basically merged with each other.

Thank you.


