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Lecture – 33
Uniform wall heat flux

Let us look at the in the previous class we looked always we looked at the problem of

uniform wall  temperature right.  This is at  isothermal  wall  kind of a situation,  all  the

analysis the integral scaling everything was done based on that right.
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Let us look at for uniformity sake, what is a uniform wall heat flux this problem is a little

bit  more  complicated  because  you would  now have  a  wall  which  is  no  longer  at  a

uniform temperature. You are supplying it with some heat flux which is q double prime

which is equal to constant that is what you have done and this brings about that your T

naught now will be a function of your y right, it has to be it has to be a function of your y

now right; that means, this is the y. 

So, it has to be a function of your y in this particular case right. So, in other words this T

naught minus T infinity will be a function of your y correct, but few things do not change

and we will  just show the approach, few things which do not change for example,  q

double prime scaling as k delta T by this thing. This of course, does not change because

this is this is the very definition of the wall heat flux right, that is what we have always



used because at  the  wall  you know it  is  a  conduction  problem basically. So,  this  is

basically that right d T by d x right. So, that is what we already know that this particular

scale will be applicable regardless of whatever.

So,  in  this  particular  case  let  us  see  that  for  prandtl  number  once  again  do  the

methodology for prandtl number much greater than 1 fluids,  we always solve for the 2

extremes right. Let us see that what will be the corresponding delta T and things like that,

we know that delta T the basic scaling argument do not change. It is just that what we are

substituting that will change a little bit. So, this g beta delta T H cube divided by alpha

gamma to the raise to the power of minus one fourth, that was what our delta T was right.

If you recall that was what it was except we wrote it in terms of Rayleigh number in this

in that case right, now in this present problem your delta T is we do not know it is a

variable quantity right, but on the other hand you know that the delta T the q double

prime is now actually known right. So, why not use this expression right here and from

here delta T becomes q double prime delta T divided by k correct. So, that is what we are

going to substitute it now into this particular expression right.

So, in this particular expression moment you substitute it, it becomes equal to H r a H to

the power of minus one fifth right where this r a H is different from the r a H that you are

you have dealt with earlier except that it is given in terms of the heat flux rather than in

terms of the temperature. 

So, this is the definition of this R a H now several books will differentiate between this R

a H and other R a H it is your choice you can either write it as R a H star as Adrian Bejan

has done or you can write  it  in any other way that you want, but it  is  basically  the

Reynolds number the equivalent definition of Rayleigh number I am sorry. So, where it

is given in terms of g beta H to the power of 4 q double prime divided by alpha, the

kinematic viscosity and the thermal conductivity that is how this has been cast. 

So, it is Rayleigh number we call it based on heat flux that is the only major change that

you have essentially you have written it in exactly the same way because nothing should

change, except that you have added one particular scaling which is basically q double

prime is equal to k delta T by the thermal boundary layer thickness right from there we

are eliminating delta T the or the temperature differential that is because that differential



is not constant anymore, it is the q double prime which is the constant over here right.

So, that is the only change that we have made over here right.
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So, in other words this delta T now therefore, should become its not put.

So, you can see that both delta T as well as the temperature differential are proportional

to H to the power of one fifth right, because H average quantity is a proportional to H to

the power of one fifth. So, the local values are proportional to the local values. So, these

are the way will be the average values the local values will be y to the power of one fifth

right. So, that is the standard because we call that a Rayleigh number actually has got a H

to the power of 4. 

So, it is basically one over H to the power of 4 by 5 and you have H here. So, that is how

this H to the power of one fifth comes into the picture, in case you are worried that how

this H to the power of one fifth came right. Now, when you are dealing with local values

that at any y along the plate this will become instead of H it will become y that is the

dynamic variable that we are actually dealing with.

So, the nusselt  number here will  be q double prime divided by T naught which is  a

function of y now, minus T infinity y by k right. So, for prandtl number greater than to

one, the nusselt number should scale as H over delta T right. So, its scales as Rayleigh



number to the power of one fifth roughly right because your delta T scales like that. So,

naturally it will be Rayleigh number to the power of one fifth got it.

So, this part should be very self obvious so right. So, nusselt number is like that and if

you recall the other 2 parameters; that means, delta T is that right. So, H by delta T is

basically  Rayleigh number to the power of  one fifth  which is  basically  the scale  for

nusselt number and remember this definition of Rayleigh number ok.

So, there is nothing great that we did except that we have played with a little bit of

variables. So, that it applies to the current problem right, now for low prandtl number

fluids low prandtl number fluids, once again the methodology is almost identical now it

is Rayleigh number prandtl number to the power of minus  one fifth  is the same thing

there is absolutely no change. The delta T is q double prime by k H Rayleigh number H

into prandtl  number to the power of minus  one fifth and  nusselt  number is Rayleigh

number into prandtl number to the power of one fifth got it. 

So, these are the 3 results that you will get again I am not going through the motion you

just substitute it you will automatically get that Rayleigh number because  the  delta T

now comes in the right hand side also. So, that is why when you take it away to the other

side  that  is  why instead  of  one  fourth  you have  now one fifth  dependence  and this

Rayleigh number has been cast in a particular way, these are the only 2 things that you

need to remember or you need to you can do all the math also and you can come pretty

much to the same conclusion, right.

The validity of the scaling results can be checked by you know more rigorous you know

analytical solutions.
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So, one such analytical solutions which is valid across by this was reported by sparrow,

this is like an adequate, this is like a curve fit and this is valid in the range of 0.1 prandtl

number and less than 100 about that. In the 2 limits 0.616 into Rayleigh number to the

power of one fifth, 0.644 Rayleigh number one fifth, prandtl number one fifth this is the

general scaling this is prandtl number goes to infinity, this prandtl number goes to 0. So,

these are the 2 quantities that you would get, but this is the most general scale that was

found by sparrow all right, these are the 2 most general scales that were founded by the

sparrow.

So, as you can see over here now we have shown that uniform heat flux is no different

except that the scaling parameters have been adjusted a little bit to make sense right. So,

you can follow through the same motion the same type of similarity arguments the same

type of you know integral analysis that basically come to the same fact, right. So, that is

what is most important over here and we have finished this particular thing and I can

show you one other important stuff which is worth mentioning before we move on to the

other things.
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If you take the case of the isothermal wall alright isothermal wall that is the first part of it

right. So, this is your delta T which scales as y to the power of one fourth we already told

that earlier right.

This delta T is constant. So, naturally the fluid that is actually going up the wall, going

up the wall  there the heat  flux that it  will  carry will  progressively go on decreasing

because the driving the temperature of the fluid is actually increasing at is as it is moving

up with  the temperature  of  the  wall  being  maintained at  a  constant  because it  is  an

isothermal wall right. So, naturally you know the quantum of heat that it receives right

the heat flux shows that kind of a trajectory right. So, it just is moving up like this ok.

On the other hand if you look at this particular situation delta T is now scales as y to the

power of one fifth, not one fourth like in the case of an isothermal wall please look at it

very carefully. What happens over here is that now the heat flux is a constant right, heat

flux is a constant now to maintain that heat flux your delta T has to show a profile like

this right because you have to have a profile like this because you have to maintain the

same heat flux right. 

At each point this is very similar to the if you remember your internal flow situation

where to maintain a constant heat flux you had to do this. So, the temperature profile

here shows as y to the power of one fifth dependents, the thermal boundary layer showed

a dependence of y to the power of one fifth here of course, it was one fourth and here it



was y the q double prime dependent  as minus one fourth; that  means,  it  shows that

exponential nature of this decay right because it is a power law. 

So, its y to the power of minus one fourth is like a power law right here of course, the

temperature increases, but at a scale which is y to the power of one fifth; that means, the

slope is not that sharp, that is why you have a more flattish type of a profile that is what

we proved just now the delta T is basically dependent as y to the power of one fifth right.

So, y to the power of one fifth means that the dependence is going to show a gradient

which is very shallow. So, this is exactly how this has been drawn this gradient is very

shallow right whereas, this gradient is large because this is minus one fourth variance

right of q double prime got it.

And naturally  the  delta  T also  varies  in  this  y  to  the  power  of  one  fifth  kind  of  a

variation. So, this is even flatter right, this was one fourth this is one fifth. So, that should

have a slightly sharper kind of a increase compared to this, correct. So, that is how this

these two figures have been drawn you can see that there is a little change this is a little

this slope is not that high, but it is a little bit more than this because of the one fifth and

one fourth variance. 

So, it is more like these boundary layer profiles are almost like constant thickness as they

move along the plate when you particularly. So, when you deal with the situation of a

uniform heat flux right, but; however, uniform heat flux decays quite rapidly because of

the minus one fourth dependence that delta T; however, does not increase that much it

just increases a little bit because of the y to the power of one fifth dependence these 2

dependences are the same. So, these 2 profiles should also look like the same. So, you

can just sweep it and you can with appropriate scales if you place on the one on the top

of the other they will be the exactly the same profiles right. So, that is exactly what we

are seeing in this particular case ok.

So, this finishes this gives you a good idea that how the constant are the isothermal wall

and the uniform heat flux profile should look like how the temperature should vary how

the heat fluxes should vary. So, this is an important visual concept because you have got

all these expressions now you need some kind of a visual feeling that how this profile

should look like. So, if you do the math you can easily identify these things yourselves,

but even if you do not do the math these are the kind of profiles that you will get which



all comes from scaling all comes from the mathematics that we did so far. So, based on

this  we  next  go  to  a  slightly  more  realistic  situation  which  is  called  the  thermal

stratification.
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We will pause this problem and we will pick it up later as with time right. So, thermal

stratification is an interesting thing to begin with right. So, you have we are talking about

you know this isothermal walls placed in an infinite reservoir of fluids there is there is I

mean it is not a not a shallow thing at all right, it is like a small wall which is placed in a

large body of the fluid right, but this is of; obviously, the simplest model possible. But it

is not exactly the case when you actually  deal with realistic  situations right, realistic

situations there will be a sealing of some sort right there will be a sealing at the end of

the day right. So, that sealing will pose a restriction so; that means, there is a finite height

if I have to put it like that is a finite height.

So, it is a finite height and the boundary layer and the heated boundary layer eventually

hits  the  ceiling,  it  has  to  hit  the  ceiling  the  boundary  the  boundary  layer. So,  what

happens when it hits the ceiling is that if you have this kind of a situation right what will

happen is that it will go up, it will hit the ceiling right. 

What we will do it will start to discharge in a horizontal direction, this heated fluid right

because if it meets a ceiling on the top right there is no other way that it can go right. So,

it will go and hit the ceiling and then it cannot penetrate through the ceiling right. So, it



has  to  go  in  the  horizontal  direction  or  rather  it  is  forced  to  go  into  the  horizontal

direction in this particular case and then it can climb down and complete the circuit right.

So, that is what we normally have, now this has got a long term effect this happens in

any room that you will see. What will happen is that because of this you know finite size

of the whole thing after certain period of time there is of course, a developing timescale

during which all these dynamics happens what you will find is that the room will become

stratified,  stratified in the sense the bottom of the room will have the have a slightly

lower temperature  from an ambient  perspective and the top of the room will  have a

slightly higher temperature right so; that means, here if I have to do it this way. 

So, if this is the height of the wall or the height of the ceiling whatever you call it alright.

So, that is the thing. So, here the temperature is T infinity 0 right so; that means, it is the

ambient temperature at the base of the room so to say right it goes up assuming that it is

linearly stratified it goes up to another temperature which is basically given as T infinity

H all right. Some T infinity H and the temperature at any particular section right at any

particular  y is  given as T infinity  0  plus gamma y, this  gamma is  not the kinematic

viscosity this gamma is some slope right. 

So, that is what the thing is so; that means, here at this point the ambient temperature is a

lot higher than whatever is the temperature at the base that is because the room has gone

stably stratified the lowest is the coolest at the top is the warmest, this happens in many

of the rooms. If you will find that in many of the many of these rooms which operates on

natural circulation you will find this kind of stratification is obvious that is because the

heated air encounters the ceiling and it kind of stays there. So, it over time it basically

increases the temperature of the room in that particular linear very linear way. So, that is

the most important part of this particular argument. So, of course, when this slope is 0

you get back your originally non stratified situation; however, when this slope is not 0 is

you basically have different levels of linear stratification. So, if this slope is very high;

that means, you have a lot of stratification and when the slope is a little low you have a

very little amount of stratification, one other thing that should be clearly mentioned over

here is that as you increase the level of stratification like this right; that means, you have

a temperature going up to infinity H, T infinity H what will happen to the heat transfer it

must actually go down right. 



That means, it is it becomes a more ineffective way that is because the driving potential

is still your T not minus T infinity, right. So, your T infinity is going up. So, naturally this

will  affect  your  delta  t.  So,  effectively  or  reducing  the  delta  T  by  increasing  the

temperature  of  the ambient.  So,  naturally  there is  that  correspondence  right  that  that

driving influence which drives the buoyancy, which drives this entire recirculation loop

that is going to become a little weaker, for the same given wall temperature remember

the wall temperature is still the same right.

So,  that  is  a  very  important  argument  over  here  and  we  can  write  this  particular

parameter as b which is like a stratification parameter and gamma H divided by T naught

minus T infinity naught alright. So, b is equal to 0 when this thing is fully this thing is

not stratified at all and b is equal to 1, when it is fully stratified right got it. So, that is the

most important part, now we will see now how to analyze this particular problem with

the with the understanding that the overall heat transfer rate, heat transfer rate will come

down, come down with gamma as gamma increases H T R comes down it has to be the

case right.

So, let us look at now this particular problem and see what can be done..

(Refer Slide Time: 22:01)

So, in this particular problem let us assume delta T is equal to delta to avoid any velocity

and thermal boundary layer issues. So, T minus T infinity is equal to T naught minus T

infinity into 1 minus x by delta T square right. V is equal to capital v into x by delta 1



minus x by delta square and you have that additional thing T not minus T infinity is equal

to T naught minus T infinity plus gamma y, right.

So, now if we do the integral approach the momentum equation, the momentum equation

0 to x v square d x minus gamma d v by d x and x equal to 0 plus g beta. Check all these

calculations when you actually do the entire exercise at home sometimes it is better if

you do some of these things at home also. So, the energy equation becomes d by d y 0 to

x v T infinity minus T d x equal to alpha d T by d x x equal to 0. Now, what we do the

basic part after this is basically to substitute T is there, v is there substituted in the energy

equation and in the momentum equation, both needs to be substituted in both the cases

right.
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So, the momentum equation let me just write it quickly  d by d y and this can be even

shortened a little bit.

So, now that we have this problem let us just define before we end this class define the

non dimensional parameters and then cast it and then we will pick it up in the next class

and do a more detailed discussion on the results. So, we can define y bar is equal to y by

H and delta bar is equal to delta by H into Rayleigh number to the power of minus one

fourth right, v bar can be taken as v divided by alpha by H these are the natural scales of

the problem. So, there should not be any issues in understanding that why this is coming

out to be like that the real number h; however, has been defined based on the initial; that



means,  on the lowest temperature that  is the T infinity this  is  the  temperature at  the

bottom of the plate and b is of course, equal to gamma by H divided by T naught minus

T infinity comma 0. So,  these are the 4, 5 non dimensional parameters that we have

defined. B is the new one these are common parameters and the y we have normalized it

by these scales should be pretty apparent because these were the scales that we used in

our measurements anyways right.

So, based on all these things in the next class what we are going to do, we are going to

put the, these parameters in the momentum and in the energy equation and we are going

to solve it and we are going to show that what the nusselt number and the heat transfer

rate is going to look like. So, see you in the next class.


