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Integral solution

So,  welcome to this  particular  lecture.  Now in the last  lecture,  if  you remember  we

basically solve the 2 scaling extremes and we showed that what are the relevant numbers,

non  dimensional  numbers  as  well  as  what  are  the  corresponding  boundary  layer

thicknesses. Mainly it was delta T, delta and delta V. These are the three types of length

scales that we actually derived. Now, to compile all of them, you can look at table 4.1 of

Adrian Bejan. 

(Refer Slide Time: 00:43)

So,  here you can see that,  when the  Prandtl  number is  greater  than one,  the thermal

boundary layer thickness which is your delta T is basically H into a Rayleigh number to

the power of minus one fourth standard, when Prandtl number is less than one, you just

add the Prandtl number to the power of minus one fourth factor, this is already what we

did. So, this is a compilation. So, this is basically your delta T.

Then, there are three things regarding the corresponding velocity scale that is introduced.

The corresponding wall jet thickness, as well as the distance from the wall to the velocity

peak. Three parameters which are important.  So, the velocity  scales are very straight



forward they are always introduced by the delta T. Remember one thing, even if you

forget everything else. It is the delta T. It is a buoyancy term, which basically introduces

whatever is that relevant velocity scale. So, that is what it is. It is always the buoyancy

term, regardless of whether you are mapping it, with inertia or with friction that is what

we have done in the 2 cases. It is always determined by the buoyancy term. So, the

velocity scales comes out to be like this 2 marks that we said. So, this is V. Now the

distance  thickness  of  the wall  jet  is  basically  the  thickness  of  the  delta;  that  means,

whatever is the delta, that is delta V or delta that you are dealing with, that is what it is.

So, that is what it is. So, that has been kind of put, forward over here and the distance

from the wall  to the velocity peak; that means, where the velocity  peak will  kind of

happen, that is given by these 2 terms, over here. So, all you can see all are H into R a H

to the power of minus one fourth.

So, basically if you talk in terms of cloning, these are all cloned kind of quantities with a

stretching factor appropriately added depending on the situation of the problem, because

ideally if your Prandtl number is equal to one all of this thing just vanishes. You get a

what we call a royal I mean everything is the same there is no limit is; obviously, it is

just that Prandtl number is equal to one So, it is just because this in takes into account the

differential diffusivity and the difference between momentum diffusivity and the thermal

diffusivity into the picture. That is all that it has done. The Prandtl number is a quantity

which essentially takes care of that momentum diffusivity versus the thermal diffusivity,

it  is  because  of  that  we  need  the  stretching  factors.  We need  the  stretching  factors

essentially because of that, of course, these are at the 2 extremes that we have pointed

things out.

And as I said earlier there are three numbers B o H and G r H. So, why where B o H is

basically R a H into Prandtl. This is basically R a H divided by Prandtl. So, these are the

factors, that are responsible. These are the three most important quantities. Look at their

applicability. So, next time when you look at a problem, look at the applicability that

which number is the most important one and not just really, it depends on what problem

you are actually dealing with. For example, in liquid metals grash of number will be very

important and things like that, but normally in the case of a natural convection problems

you know what we do, we basically use this interchangeably, we use grash of Rayleigh

and all these things that are very mixed match kind of a fashion. We do not partition it



like this, sometimes it may be very difficult to partition it in the first place, but normally

as you can see, these numbers are all pretty much close to each other with the Prandtl

number factor added here and there.

So, in essence they designate the basically the scales of the problem; that means, what

are  the different  scales  that  are  actually  responsible  for  each  of  the  problem. So,  of

course, you can see that why your another thing to note in normals natural circulation

problems, you will find that usually this Rayleigh number and grash of number values

are very high. You will find 10 to the power of 4, 10 to the power of 5 and things like

that. That is a very normal practice, even before you move on to the turbulent regime, the

reason because is that everything is scaled as one fourth. So, everything is kind of, there

is a factor of scaling that is always in built into the system. So, it is not just a Rayleigh

number per say it is a one fourth of the Rayleigh number that actually matters. So, these

are some of the subtle things that you should kind of remember and these are the things

that can come in handy, that it is very different from the natural convection from the

forced convection problem.

(Refer Slide Time: 05:51)

So, let us look at the Length scales put in a kind of a formal graph over here. So, what we

have done is that basically what professor Adrian Bejan has done is, basically you have

divided by the length scales divided by this factor H into Rayleigh number to the power

of minus one fourth, because that we saw was universal regardless, wherever you put it is



the same. So, it is kind of a regime map per say, this plotted with  Prandtl  number and

here  you can  map out  the  different  quantities,.  So,  for  example,  when your  Prandtl

number is less than 1, you have the Prandtl number to the power of minus one fourth

graph, you have that particular line of graph which basically gives you a delta T. 

So, you can basically map out that you now belong to this family it is like a family tree.

So, you belong to this particular family. Similarly you can map out for Prandtl number

greater than one; you can map out that what will be this. What will be the value of your

delta That kind of a thing and similar thing goes and you can see that here it becomes flat

that means, when for Prandtl number one up to about hundred, you will find that this

particular delta T is of the order one, why that particular thing happens, it  is Prandtl

number greater than one situation.

So, remember the delta T in that particular case is independent of Prandtl number. You

remember that it is H R a H to the power of minus one fourth. So, naturally this value

will be one. So, on and beyond it is basically independent of Prandtl number correct. So,

thats why you get your delta T; however,  the velocity boundary layer is not the same

way.  So,  for  Prandtl  number  greater  than  one  you  have  this  particular  kind  of  a

dependence Prandtl number to the power of half dependence on your velocity that will

be evident if,  you guys get confused, is  basically  if  you look at  this  particular  thing

which is the basically the thickness of the wall jet it will be very apparent it is Prandtl

number half factor is there here that factor is not present all. So, this is the delta T, this is

your delta or delta V whatever you call it. 

So, this has got a Prandtl number half, this has got no Prandtl number, now if you go and

look at this particular these 2 lines of the plot, you will find here it is one flat because

there is no Prandtl number, no matter what is the Prandtl number value it is of the order

one.Here of course, the velocity shows that Prandtl number half dependence. So, with

Prandtl number that will go up, which is logical also as you increase the Prandtl number

your velocity will be is going to be felt at larger and larger distances into the reservoir,

now let us look at the other situation which is the second one in that particular case you

see it is a Prandtl number minus one fourth, the thickness of the wall jet is very small and

this is the corresponding Prandtl number value on the other side. So, if you look at then

this particular plot and this particular plot you will get the meaning. Both actually has got



that Prandtl number dependence now and your velocity boundary layer is different from

your temperature boundary layer and this is; obviously, going to be smaller than that.

So, as you go on decreasing the Prandtl number, our velocity boundary layer becomes

thinner  and  thinner  and  thinner,  which  is  kind  of  obvious  because  you  are  I  mean

restricting it very closer and closer to the wall. Whereas, in the other case you will see

the reverse trend that will start to happen. So, you can see there are basically a family of

four curves that you can see four families with Prandtl number equal to one is being the

point, the focal point where everything kind of falls on the money. So, there is absolutely

it is basically as if you are kind of diverging from that particular point as you go in either

directions Prandtl number greater than one or Prandtl number less than one.

So, based on this now, let us look at so far we have done a lot of scaling. So, now, it is a

time to do a little bit of math which is basically we will shift to the integral analysis.

(Refer Slide Time: 10:35)

So, Integral Analysis and by now, you are most familiar with what Integral Analysis is.

So, I will write the y momentum equation because that is the only equation that is kind of

as important. Continuity, energy, these things are kind of very common. So, now, what is

the  tradition  to  do  in  an  Integral  Analysis,  you  basically  integrate  out  one  of  the

dimensions  in  this  particular  dimension  it  is  a  x  dimension  previously,  it  was  a  y

dimension,  but  now  your  plate  is  actually  rotated.  So,  your  x  points  out  a  way



perpendicular  to  the  plate.  So,  naturally  you  are  going  to  do  the  x  dimension,  x

integration first; that means, integrate out with respect to x.

(Refer Slide Time: 12:05)

So, integrating with x, where x is greater than delta or delta T ; that means, it is greater

than both actually and we apply this to the y momentum equation first. So, what will

happen? Ii  am not going over the Lebanese and other kind of rules. So, you can read

about it once you consult your forced convection notes.

So, now getting read of a few terms, why is the first term disappearing that is because of

the simple reason at the wall and at x you should be at actually equal to 0 because we

have taken x which is beyond all of this limit and v also should be equal to 0 and the wall

of course, u and v both are equal to 0 in the far field of course, you have v to be equal to

0.

So, anyway the first term goes away because of that particular reason, second term stays

and you have this particular term, now here of course, we are evaluating at x equal to 0,

but because at x equal to x, which is far away from the wall, you naturally would not

have any shear stress coming into the picture because it is a consent fluid, there is no

provision of having any shear. So, this is the y momentum equation. Similarly let us look

at the energy equation now. This is the energy equation. You once again integrate with

respect to  x  all you integrate with respect to x. So, you get  u T, 0 to x it is a little bit

boring, but I mean this is a then necessary thing that we have to do this equal to 0.



(Refer Slide Time: 14:46)

So, that is once again the same logic for field you do not have a temperature gradient

anymore at x equal to x. So, here of course, the situation is at x T infinity and d by dy

integrate it from 0 to x, vT dx minus alpha dT by dx evaluated at x equal to 0 all if you

substitute  this  particular  guy  from the  continuity  thing,  any  x  that  you  are  actually

evaluating it. So, you get using continuity you get minus d by dy 0 to x VT infinity d x

plus d by y or in other words d by dy 0 to x v T infinity minus T d x minus d T by d x is

equal to 0.

So, that is what you get now what is the next step that you usually do in such cases, you

basically choose a profile for temperature and velocity and you already got a feel that

these profiles looks very exponentialish to you, velocity for example, goes up and then it

comes down. So, it should have a multiplicative effect somehow, if you when you choose

the  temperature  profile  or  the  velocity  profile  you  should  have  that  thing  in  mind

temperature profile is kind of shows that monotonic kind of decay, the delta T from a

delta T perspective. So, let us say if the Prandtl number is much greater than one that is

one  of  the  limit T minus  T infinity  if  I  write  it  like  this  x  by delta  T, will  this  be

reasonable?
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I think it would be reasonable because it shows that exponential decay of the quantity

and it looks pretty exponential decay, when we actually did the scaling, but velocity is a

little bit different it is a little bit of a different beast than that. So, for Prandtl number

much greater than one, the temperature profile is given by this  I think we can buy into

this particular argument.

Whereas the velocity profile, as I said velocity is a 2 parameter model. So, you can have

something like that. So, it is one minus that and it is exponential of x to the power x by

delta. So, it is like a 2 parameter model that we are proposing over here in addition we

define one more quantity  which is q which is delta by delta  T, which is as we have

proved by now; it is a function of Prandtl number or some sort. So, what will happen?

Now you substitute these 2 things into those 2 equations momentum and energy and

from the momentum you are going to get. So, from momentum this math you can do the

energy equation; however, there is one small catch over here.

The catch is that, what are the unknowns in this particular equation. In this particular

equation that we have done, there is a delta which is of course, an unknown there is q

which is of course, an unknown because we do not know what function of it is in terms

of Prandtl number and then there is of course, that v the maximum velocity we know that

delta T, we do not know what is the velocity that is going to be incorporated. So, based

on these we need a third equation.
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 These equations have got three unknowns, 2 equations in post problem you cannot solve

it. So, you essentially need one more parameter over here, one more equation and that

equation is usually derived the third equation let us call that the third equation.

So, once again very close to the wall this is the same logic that we did earlier very close

to the wall inertia is negligible. So, it is basically friction that is balancing the buoyancy

all. So, you have g beta T, not minus T infinity is given by gamma all that is equation all.

So, simplifying if you now once again back substitute the same thing 5 by 6 q square q

plus half and q plus 2 go to Prandtl number the third equation.

So,  basically  now what  you are  going to  do  you are  going to  solve  all  these  three

equations in a coupled manner and basically find out what is the solution not very trivial

it requires about 2 classes to work it out the full thing, but I mean you can do the solution

as a practice, but the whole point of this is not to solve the equation, but basically to

show that delta by delta T is given by 6 by 5 Prandtl number to the power of half, which

agrees with the scaling argument that we formulated earlier. We said it is going to be

Prandtl number to the power of half.

So, 6 by 5 is just the factor that sit in front. Nusselt number is given by 3 by 8 q cube

divided by 1 plus  q,  q plus  half  and  2  plus  q  that is the Nusselt number, raised to the

power of one fourth, Rayleigh number to the power of one fourth, this is q this is not

number,  Now for  Prandtl  number  as  it  goes  to  infinity  because  it  is  a  high  Prandtl



number, fluid situation the Nusselt number basically becomes 0.783, Rayleigh number to

the power of one fourth, which almost agrees with the order that we calculated, earlier

we said it is going to be Rayleigh number to the power of one fourth and in the limiting

case of Prandtl number going to infinity it comes out to be about 0.8 of Rayleigh number

to the power of one fourth. So, this is an extraordinarily powerful thing that we did in the

scaling, we provided the correct scaling and that is validated over here including the ratio

of the 2 boundary layers. So, this is the most generic form for any Prandtl number. This

is the form when the limiting case when Prandtl number goes to infinity for the low

Prandtl number.

(Refer Slide Time: 23:27)

That is Prandtl number much less than one here your u  v  is x by delta T one minus

exponential x by that is the v profile. Once again look that we have changed it a little bit

the inside has changed now to delta v previously it was delta T that is, because the peak

is now appearing within this, previously it was appearing within the delta T. now it is

appearing within delta v. So, it takes into account the correct estimation and what about

the temperature? The temperature profile should remain the same. There is no reason to

change the temperature profile because it is still delta T whether delta T is big or small

that does not matter.

So, what we do is that, once again you solve as before. So, you get your Nusselt number

to be 3 by 8 to the power of one fourth, q1 2q one plus one half Rayleigh number to the



power of one fourth where q1 is delta v by delta T, in the limiting case when Prandtl

number goes to 0 almost close to 0 this becomes 0.689 in to Rayleigh number y into

Prandtl number to the power of one fourth, once again the scaling works that is because

we are getting a number which is of the order one correct.

So, this particular thing if you look at this particular problem, now you will see that we

have established this is the most generic for any Prandtl number of course, given that

Prandtl number is much less than one not for any, this velocity profile is very important

takes into account the correct form. Correct form is very important because when I said

earlier that you need a velocity profile, which is remember in your flat plate boundary

layer we said, if you recall the situation that this is your boundary layer profile, you have

to match a few boundary conditions. So, what prevents us from having this, you can have

that or what prevents us from having this. So, long as you match the gradients somehow

and  match  the  boundary  conditions  you are  good,  but  these  profiles  are  not  correct

because they do not have the correct form. Correct form is very important because you

cannot  have kings and other things appearing in  the velocity  boundary layer  profile,

which is unrealistic what will lead to that there is no physics.

So, similarly here the correct form is very important velocity should go up and then it

should come down, it should not do it should not show a multi modal peak. For example,

you might argue why not a multi modal peak what is the why there should be a multi

modal peak in the first place what actually generates a multi modal peak. We are assuring

that a 2 ends the velocity should be 0. So, there it must have a peak somewhere that peak

in a certain case is within that  delta  v that  peak in some other  cases within delta T,

because in that case delta is more than your delta v and the peak cannot be actually in the

delta region, which is beyond delta T, because there is no driver. So, why should the peak

actually shoot up there. It should shoot up within delta T and it should decay within delta

similarly in the other case because the driver is still delta T, the peak happens within that

small layer of delta v because your momentum diffusivity it is a low Prandtl number

fluid situation. So, the momentum is more arrested or in that particular region.

So, based on these 2 conditions the correct velocity profile descriptions are given by that

though this is kind of not exact because we have taken exponential,  it could be other

functions, which is similar to that and you can also show that, if you use other functions



you will get very similar results as well. So, it is not like that your this number at this

0.689, this might change a little bit.

Of course, we will do in the next class the similarity solution and we will try to show in

through the similarity solution that, what is the exact values of this particular profiles and

how  these  profiles  actually  evolve,  because  this  is  still  done  through  the  integral

arguments. So, see you in the next class where we will start the similarity solutions for

this and try to see that how the profiles look like. 

Thank you.


