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Scaling analysis – II

In the last class we started doing the Scaling Analysis and if you remember correctly that

we had two ranges,  one was for Prandtl  number greater than 1 and one was Prandtl

number less than 1. And we said that in these Prandtl number ranges which particular

terms become most important. So, let us write the governing whatever we did in the last

class. So, it was something like this.
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So, then there was the friction term and of course, this is buoyancy. So, this is basically

was our buoyancy term, right. So, this was the friction or the viscous term and this was

the inertia, right.

So,  depending  on the  value  of  your  Prandtl  number  we can  have  different  types  of

scenarios, right. So, let us take the high Prandtl number fluid which means its Prandtl

number much much greater  than 1,  we are going to  propose a  two extreme type of

solution over here. So, when Prandtl number is much much greater than 1, friction sorry,

friction  is  basically  balanced  by  the  buoyancy.  So,  friction  and  buoyancy  kind  of

balances each other. So, in other words these are the two terms which basically balance



each other. So, in that particular case your value of your delta T which is basically the

boundary layer thickness will scale as H, R a H to the power of minus one-fourth right.

Remember the scale it is not Rayleigh number that is important it is Rayleigh number

raised to the power of one-fourth minus one-fourth that is the term which is important.

So, the correct scaling comes from that.  So, delta S or delta  by H in other words is

nothing, but some kind of a slenderness ratio. If you recall that if this was your boundary

layer this is the plate correct. So, this is your delta, delta T right if you recall. Then delta

T by H is basically nothing, but the slenderness ratio.

This is the same type of thing that you would see in your flat plate boundary layer forced

convection where it  was delta  by x right.  It  was in that  case the plate  was basically

oriented in the horizontal direction and it was forced in nature. So, delta T by H and delta

by x basically  represents the kind of slenderness ratio.  So, here the slenderness ratio

essentially scales as Rayleigh number to the power of 1 minus one-fourth. So, the heat

transfer as we know the heat transfer coefficient h basically scales as k over delta T this

is still the same it is inverse of the boundary layer thickness right.

So, the Nusselt number in this particular case is this where H being the relevant length

scale of the problem and this represents R a H to the power of one-fourth right. So, this is

an interesting thing. So, the Nusselt number varies as Rayleigh to the power of one-

fourth the boundary layer thickness varies as R a H to the power of minus one-fourth all

right. Now, there are the problem does not really end here. The problem is a little bit

more complicated than this. So, let us before we go into that let us also calculate that

what  is  going  to  be  your  v;  that  means,  the  velocity  scale  that  is  imposed  by  this

temperature gradient.  Now, that  velocity  scale  is  given by alpha by H into Rayleigh

number H to the power of half all right.

So, v is alpha by H multiplied by Rayleigh number H to the power of half. So, these all

comes from the scaling arguments this all comes from the scaling that we did earlier

right it is just a substitution of delta T that is all that we have done ok to get from here to

here. So, now, that you know this now the question remains what will be the velocity

profile look like. Because remember last time we kind of sketched and we said that we

are going to change it that the velocity profile is going to look something like that, but in

reality does the velocity profile exactly looks like that or is it something a little bit more



different than this right. Because last time what we said was that at the wall it must be 0

at the edge it must be 0, so it must have a maximum somewhere in between right. So,

that was the whole argument that we pursued right.

So, in that particular case to answer this particular question let us see the situation a little

bit more carefully and this is where the plot actually thickens a little bit.
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So, these are the two things. So, this is let us mark something like a delta T here, delta T

is nothing but the temperature differential that is creating the problem this is your delta T

which is basically the boundary layer thickness 

So, in this particular zone for Prandtl number much much greater than 1 right, for Prandtl

number much much greater than 1, if you look at in this particular situation towards the

left side of this delta T or within this delta T or like delta T from here to here right. What

you are going to get? The temperature is going to start at delta T that is the maximum it

slowly goes down to something like 0 here, it  is more asymptotic ok. So, that is the

temperature profile correct. So, here in this particular zone in the driving heated layer

this  is  the driver  right,  because  beyond this  there  is  no temperature  gradient  it  is  T

infinity its T infinity here right.

So, the temperature decays naturally it takes heat from the wall, it naturally decays and it

goes the decay amount is basically 0; that means, you go and reach the T infinity after



the delta T is over right that is standard whatever we know about boundary layer. So,

therefore,  the driver  for  this  particular  problem is  essentially  this  heated  layer  right,

whatever the air, whatever gas that you are talking about, whatever is getting heated in

this region around the wall is basically the driving mechanism for this buoyancy right.

And here you have a balance between friction because it is a Prandtl number much much

greater than 1 problem, balancing the buoyancy correct that is the nature, right.

Now, what about the velocity? Now, the natural question is that now we have a situation

in which you know the temperature decays its gone right. But what about the velocity

now. So, the how the velocity boundary layer because remember it is a Prandtl number

much much greater than 1 situation, naturally. So, what happens in the region which is to

the right of this delta T? Of course, the temperature does not exist anymore. So, in this

particular region if we say that this is a driven layer almost like an added mass effect

right that when you have something moving it carries some of the added mass with it.

So,  this  is  a  driven layer  which is  unheated  correct  is  unheated  because there  is  no

temperature gradient over at there. So, in that particular case what is actually driving that

driven layer what will be the forces that will actually act in that particular region. One

thing that you can be sure it has to be inertia because there is a motion that is created

right. So, that motion now has to be balanced by the friction, there is no buoyancy here

right, that motion has to be balanced by the friction right. So, in this particular case what

will happen is that if we mark the scale of the velocity, if this is the scale of the velocity

this velocity will grow, will grow and this will decay at a certain distance which is given

by delta right. So, this delta is this.

So, delta is definitely greater than delta T. It is a Prandtl number much much greater than

one situation, remember now the scale of the velocity and the scale of the velocity is

driven. Remember here two things, one is that the velocity scale is determined by the

heated driving layer right. But on the other hand the driven layer thickness or the total

thickness  that  you are  actually  dealing  with  is  basically  determined  by this  balance

between inertia and friction outside of this delta T.

So, in other words in this region if we just apply a balance between inertia balance is

friction. So, what we will have is basically v squared H balancing gamma v by delta

square correct then that will be the balance. Now, if you we already know what is the



scale of v is right that we just did if you just go to the previous one. So, that is the scale

of v this is remains unaltered alpha H by Reynolds number to the power of half. So, you

substitute v equal to alpha H or Rayleigh number to the power of half you substitute that

over here in this particular equation right, what you get is basically your delta scales as H

R a H minus one-fourth Prandtl number half.

So, imagine this, what was your delta T per say? Delta T was H into R a H to the power

of minus one-fourth right that was your delta T. So, basically the length scale is still H

into R a H to the power of minus one-fourth is just that you have you have added a

stretching factor with respect to the Prandtl number. So, Prandtl number basically acts

like a stretcher, a stretching factor over here that that actually leads to this particular

problem. So, in the Prandtl number much much greater than 1, situation to recap you

have basically two zones right.

The driven the driving heated layer is basically a balance between friction and buoyancy

right, where the relevant thermal boundary layer is delta T right and the velocity scale

comes  from this  particular  analysis  which  is  given  over  here  right  and  the  Nusselt

number is also given in the same way. However, the driven portion that is the layer that is

driven because of this flow that is created and because it has got a Prandtl number which

is much much greater than one effect basically, what we have is that we have a second

region in which there is an inertia and friction balance because there is no buoyancy over

there, there is no temperature gradient. So, how can there be buoyancy?

From there you find that your boundary layer your velocity boundary layer is basically

stretched a little bit how much it is stretched is determined what is the value of your

Prandtl number. If your Prandtl number is very very high you can see from this equation

right here about delta. If your Prandtl number is very very high this velocity effect is felt

for a very long distance got it. Even though this layer may be very small understand. So,

the driving layer is very small, but the driven layer can be quite large depending on what

is the value of your Prandtl number, if your Prandtl number is very high it can be felt

over a very long distance right.

So, but ideally speaking, here of course, your delta a by delta T is basically a Prandtl

number to the power of half kind of a relationship right, if you divide the two and it is

greater than 1. So, this is one of the important relationship that you should recognize here



therefore, unlike in momentum boundary layer the velocity boundary layer is determined

by two scales, one is your delta and one is your delta T. There are two scales which

determines it delta and delta T. This is obvious because your momentum equation now

has got the inbuilt temperature right you have got the inbuilt body force term, in terms of

temperature now or the buoyancy and the body force term combination in terms of the

temperature in the momentum equation in built right.

So, it is very natural that your velocity profile is now going to be determined by a two

parameter kind of a set. So, it is delta and delta T right. Unlike in forced convection

where it was not it was decoupled from delta largely right. There is unless there is some

property variation  that  you are taking into account.  So,  the velocity  scale  is  reached

within this delta T because you can see the peak is appearing within the delta T, whatever

happens beyond that  is  basically  the decay or the tail  of the velocity  because where

inertia and friction are basically fighting among each other because you know the Navier

Stokes is a dissipative kind of a system, got it.
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So, based on this we move to the next one which is basically the low Prandtl number

fluid; that means, Prandtl number is much much less than 1. So, here of course, your

delta T scales as H R a H Prandtl number to the power of minus one-fourth that was the

old condition remember. And here of course, it is balance between inertia and buoyancy

right that  is what we told that it  is  a balance between inertia  and buoyancy because



Prandtl number being much much less than 1 inverse of the Prandtl number is much

much greater than 1.

So, therefore, the friction term does not really become very important here. So, v or the

velocity scale that is introduced is alpha by H into R a H into Prandtl number to the

power of half, that is the velocity scale. And the Nusselt number is once again the same,

but of course, it has got the Prandtl number now, right got it. In some cases this Rayleigh

number into Prandtl  number combination  is  given by a new number which is  called

Boussinesq number B o H. So, you can write this term as Boussinesq number to the

power of one-fourth as well all the places where there is Rayleigh number into Prandtl

number combination you can write it in terms of the Boussinesq number the Boussinesq

number is basically given by g beta delta T H cube divided by alpha square right.

So, for low Prandtl number fluid it is a Rayleigh number which is important right. For

high Prandtl number fluid is the Rayleigh number which is important for the low Prandtl

number fluid it is a Rayleigh number and Prandtl number combination that is important

got it, which we have cast and written it as Boussinesq number right. So, also here of

course,  once  again  if  I  try  to  draw  now  this  particular  system  right.  So,  what  this

particular system will look like, so that is the natural thing, that the natural question that

pops in one’s mind. So, let us look at that situation.
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Once again it is a Prandtl number much much less than 1, system I will put a few lines

and we will go through it as and when this is delta T, this is the temperature differential.

So, it comes down like this kind of like that, got it, this is basically a balance between

inertia balancing buoyancy alright inertia balancing buoyancy, we have not said anything

about the velocity scale though. So, this looks very natural that once again it decays to

some kind of a 0, the profile looks a little bit different it looks a more linearish kind of a

profile, but that we will see that why that thing happens in that particular way.

So, based on this you have a very clear idea that this is how the temperature profile

should actually be. Now, outside this delta T of course, because this is a situation in

which  we are  dealing  with  a  problem in  which  the  friction  is  not  important  in  this

particular layer right. So, beyond this delta T remember the difference between that last

situation and this beyond this delta T once again buoyancy goes to 0, the buoyancy goes

to 0 alright.  So,  in this  particular  region beyond delta  T because it  is  a  low Prandtl

number  fluid  right  there  is  no  velocity  possible  outside  this  particular  layer  correct

because if it is low Prandtl number fluid its inertia driven by buoyancy, inertia buoyancy

are balancing each other. So, beyond these of course, the buoyancy is; obviously, going

to be 0 because there is no temperature gradient to support it. So, naturally there is no

velocity scale that are possible.

So, that velocity profile must be then as wide as the temperature profile that is about it

right it  must be as high as the temperature profile right so that  means,  whatever  the

velocity profile we are going to draw it should have a maxima somewhere and it will be

0 on this side and 0 on the wall side. Wall side it has to be 0 regardless right, on this side

it will be 0 because there is no driving mechanism and friction is not important in that

particular region anymore and it is a low Prandtl number fluid right. So, the effect of

momentum is not felt up to that particular region, got it.

So, the velocity profile must be as wide as the temperature profile and so we can write

this velocity profile must be as wide as the temperature profile alright, it should be as

high as the temperature profile. So, naturally this dictates that the peak of the velocity

would be somewhere in between these two limits, these two 0 and delta T in this limit the

velocity must be maximum in some particular, some location right. So, velocity should

have a peak should have a peak somewhere in between right has to be, all right.



So, the location of the velocity peak is a important second length scale that comes in to

this particular problem. So, location of the velocity peak, peak is an important second

length scale. So, if we assume that delta v is that particular thickness it is a very small

thickness of a layer right next to the wall just hear the arguments here very carefully that

we are imagining that there is a thin layer of fluid very close to the wall right, and that

we are defining as this delta v because we are trying to find out what will be the location

of the peak, what will be the location of the peak and what will be the value of the peak

right.

Now, this  in this  particular  location  in that  small  band what  is  important?  The most

important part over there is your friction can no longer be taken to be equal to 0 because

it is a region very very close to the wall right. It is a region very very close to the wall

where the shear is very very important right. So, there the friction cannot be neglected

right. What can be neglected though in that particular region is the inertia, because it is a

region  very  close  to  the  wall  right.  So,  by  the  concept  of  your  boundary  layer  and

whatever you have learnt in the course of this particular course it is basically the friction

in that particular layer which is being which is balancing what we call the buoyancy.

So, friction and buoyancy basically balance each other in a layer which is very very close

to the wall in a very thin layer which is called the delta v, in which the buoyancy driven

fluid  is  restrained by the  viscosity  of  the  wall,  that  is  essentially  in  a  nutshell  what

friction balancing buoyancy exactly means right. So, there if we now apply our scaling

argument, in that particular region, in delta v in that region if we apply the scaling that is

the scaling that we have right that is buoyancy and this is friction right.

So, from there you can devise your scale will be something like this right where this grh

this  parameter  that  you are  actually  seeing  is  basically  Rayleigh  number  divided  by

Prandtl number. In other words it is written as g beta delta T H cube divided by gamma

square,  in  other words this  is  called the Grashof number right.  So,  this  is  called the

Grashof number right. In other words the delta v that layered thickness that we have

found out  this  second thickness  is  given by once  again  H into  the Grashof  number,

Grashof number is Rayleigh number and Prandtl number.

So, once again you see that a scaling is still Rayleigh number H into Rayleigh number to

the  power  of  minus  one-fourth  and  it  has  been  compressed  or  changed  by  factor



involving the Prandtl  number. Once again that  particular  as I  told you earlier  it  is  a

stretching or a compression term that is what Prandtl number is right. So, you have a

scale using that you are just compressing it like this or stretching it out like this that is

what you are doing with the Prandtl number by dividing it or multiplying it right and that

is exactly what we have done over here alright. So, there are 3 numbers that emerges out

of this discussion, Rayleigh number which is valid for high Prandtl number fluid analysis

right.

Then for low Prandtl number fluid analysis there are two further numbers that comes into

the picture, one is the Boussinesq number which determines what we call the thickness

of  the temperature  boundary  layer  the  first  length  scale  of  the problem.  The second

length scale which is the thin layer in which the velocity basically peaks that is taken

care of by the Grashof number which is nothing but the Rayleigh number divided by

Prandtl number right. So, it is a once again a stretching term that we have applied over

here. So, naturally before we end this particular lecture is basically what will the velocity

profile look like.

So,  it  will  peak  somewhere  there  and  then  it  will  slowly  kind  of  decay  like  this

something like that it will peak somewhere there. So, this is your velocity scale and that

location of that delta v is given by the Grashof number. So, this is, this has been our

grand findings. So, to say and of course, your delta v by delta T like we wrote before. So,

once again Prandtl number to the power of half and this time it is less than 1, right. So,

clear and up to this particular part. Now, we will show some observations based on this

in the form of a table, but up to this particular point it is clear three numbers Rayleigh

number, Boussinesq number and the Grashof number.

Now, in many of the books this will be represented that rather than stating these numbers

as a ratio of forces. For example,  in this case Grashof number you can see from the

definition it is a balance between the friction and the buoyancy force correct because that

is how we got it in the first place right. Similarly in Boussinesq number and Rayleigh

number you can just look at the scale arguments right. But in some cases people look at it

like what we call slenderness ratio; that means, the ratio of the boundary layer thickness

versus the natural length scale of the problem right.



So, the ratio of those two is what actually gives you that is what the significance of these

numbers are. But in many cases you will find the other interpretation that is because it is

a ratio of the two scales, I mean either it the two forces basically buoyancy friction,

buoyancy inertia and things like that. So, it is just the balance between all these forces.

So, in the next class what we will do, we will start with the observations and then look at

the integral formulations in a little bit more details right. So, that was what we are going

to do.


