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So, in the last class we did a lot of analysis and we saw that what will be the requirement

for natural convection. So, in this particular class we are going to start it off with some of

the  formulations.  So,  we  write  down  the  governing  equations  first  and  from  the

governing equations  let  us  see  that  how we can basically  through scaling  and other

arguments establish the relevant parameters that are responsible for driving this natural

convection.
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So, our equation sets will be steady 2D equations our delta T which is basically if you

consider this as your wall which is at a temperature T naught, and delta T is basically the

layer, so let us assume this for the time being. So, this is your delta t. So, H being the

height.  So,  H is  much much greater  than delta  T. So,  here the  driving factor  as  we

mentioned earlier factor is gravity plus the density variation. The gravity is an important

parameter over here the outside fluid is at a temperature T infinity T naught is greater

than T infinity, I mean these are the cases under this considerations we will solve.



So, the first the continuity, the continuity equation is once again if I this is x, this is y,

this is u this is v. So, dux by dy plus dv by dy is equal to 0. First continuity equation then

comes  the  momentum  equations  the  momentum  equations  of  course,  there  are  two

momentum equations now v du dy its exactly the same. So, there is not much to describe

a  square  u  by  dx  square  plus  d  square,  square  u  dy  square  ok.  So,  this  is  in  the

momentum  in  the  x  direction  no  gravity  comes  into  the  picture  gravity  is  acting

downwards.

On the other hand got it minus g, g is the additional term that you have right. So, up to

this of course, we have just and then of course, the energy equation, energy equation is

du dT by dx plus v dT by dy alpha d square T by dx square right. So, x momentum, y

momentum  continuity  these  are  the  equations  that  you  have  this  is  a  part  of  the  y

momentum at g.

So, this is the only additional term that you see over here which you are not have not

seen the same in the case of forced convection because force convection is forced. So,

gravity is not gravity, gravity is too small for those things. Of course, forcing can be

important gravity can be important in certain situations in forced convection also let us

not make a sweeping comment about that, but normally most of the problems that we

dealt  with  we  did  not  consider  that  to  be  the  case.  So,  we  do  the  boundary  layer

approximation right.
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So, the boundary layer approximation, where we say that P is a function of y right this is

the same thing that we did earlier that P is not a function of x its only a function of y.

Remember  our  flat  plate  boundary  layer  there  of  course,  the  axes  were  a  little  bit

different.

So, but based on that you get what I am talking about y scales as H that is the height x

scales as delta T right and dp by dy is equal to dp infinity by dy is equal to minus rho

infinity  into g.  So,  it  is  essentially  hydrostatic  in  your region got  it.  So,  P is  only a

function of y that it has to be right because P is not a function of x that this we already

proved in our flat  plate boundary layer problem alright.  Now, in this particular case;

obviously,  obviously  because  it  is  gravity  assistant  this  particular  pressure  drop  is

nothing, but the given by the hydrostatic head. That rho infinity g is nothing, but the

hydrostatic head over here.

And also d square by dx square is much much greater than d square by dy square right

because y being the direction of the flow and x being the boundary layer direction, or the

depth of the boundary layer direction. So, naturally this parameter will be also satisfied

alright. So, therefore, the y momentum equation which is the most important equation

here in this case anyways is basically given as d dv by dx plus v dv dy all to minus 1

over rho dp infinity by dy plus gamma d squared v dx square minus g my minus g.

Now, you are going to substitute this back here that is what we are going to do. So, and

we are going to take the rho to the left hand side. So, what will happen is that u dv dx

plus v dv dy equal to mu d square v dx square plus g rho infinity minus rho alright rho

infinity is basically the density of the fluid at the infinity right in the reservoir section

right. So, this is the equation this is the y momentum equation.

Now, here as we can see two interesting things comes out. So, there is a rho here there is

a rho there right. So, ideally for a system like this where the rho is actually changing

right you have to incorporate the change everywhere right so that means, this rho now

we have to cast you in terms of rho infinity and see what kind of a variation we get or

cast it in terms of temperature right because that was the argument that if the temperature

is driving the density then we have to cast density in terms of temperature right. Now,

and that we will use that beta that we already have right that gives you the relationship

between density change and temperature change.



Now, interesting point to note over here is that here you have actually a density rho here

you once again have a density difference which is basically like the buoyancic type of

term that  you have right.  Now, in this  particular  situation looking at  this  you would

ideally say let us substitute whatever is the density change here as well as whatever is the

density change here right and this will make the problem a little bit more complicated

than what we anticipate alright. Because density on the left hand side is associated with a

convective term right density on the right hand side is associated with buoyancy and the

body force term alright, it is associated with the body force term.

So,  we  make  here  an  assumption  which  is  going  to  be  valid  for  small  temperature

differences  only  and that  approximation  is  called  the  Boussinesq  approximation.  So,

what  does  Boussinesq  approximation  entail?  We will  come  to  that  and  in  a  little

bit.Boussinesq approximation actually tells you or the spirit of the Boussinesq let us put

at put it as a spirit of the of the Boussinesq approximation. The spirit of the Boussinesq

approximation is that the density on the left hand side; that means, associated with the

convective terms let us take that to be the same density as the reservoir fluid right. Let us

take that to be constant point number 1.

Point number 2 is that the density on the right hand side let us now express that density

in  terms of  temperature.  So,  you see that  we are differentiating  the problem we are

stating that this is still an incompressible type of a problem; that means, most part of the

Navier  Stokes  equation  is  actually  behaving  with  the  constant  density  term  right;

however, in the body force term when density is present we are taking its variation into

consideration. So, that is the thing that Boussinesq approximately did. So, what happens

is that now let us see that what the density will be.
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So, density is given by rho. So, if you take it to be expansion. So, just take a first order

expansion in this particular case. So, beta T minus T infinity plus there are a lot of higher

order terms right this essentially tells you that beta is basically a linear that that slope if

you recall that beta is nothing, but 1 over rho d rho by dT at constant P right. What we

have done using this expression and this expression combining these two this actually

tells you that beta is basically a linear slope; that means, you take rho minus rho infinity

divided by T minus T infinity you get beta right.

So, it is a like a linear interpolation of the whole thing alright. You are not taking into

account any second order curvature effects right square terms that we have over here. So,

this can only happen, this can only work when the density or the temperature difference

is small; that means, T is basically T infinity plus some epsilon. So, it is small. So, the

variation in density radiation in density is small,  T equal to T infinity  minus epsilon

variation in the density is actually small understood. So, this can only happen when you

actually take only the first order term. So, right the leading order term alright.

So, if you now substitute, if you substitute the whole messy looking thing now in the

governing equation what you would normally expect to get is something like this alright,

1 minus beta T minus T infinity that will be the first term u dv dx plus v dv dy right. This

will be the total form if we write it like this mu d square v dx square plus g beta T minus

T infinity into rho infinity correct. But however, what we are going to do we are going to



do only the dominant term. So, we are going to take this term only associated with this as

we told earlier. So, we are going to take it as rho infinity u dv dx plus v dv dy is equal to

mu d square v dx square plus g beta T minus T infinity into rho infinity.

Now, if you divide out with the density term now so, what you will get is, dv by dx into v

dv by dy this becomes your kinematic viscosity, kinematic viscosity is still given by the

rho infinity. This is given by gB T minus T infinity that is what you should get alright.

So, that is the expression, that is the expression that you have right. So, the momentum

entire momentum equation kind of sandwiches and becomes exactly like this right. So,

what are the key things that we have done? We have taken that in the convective term

there is no variation in density, density is a constant.

In the on the other hand in the body force term what we have done is that we have

decomposed the density  variation  we have used beta  alright  which is  the volumetric

expansion coefficient. We have done it in such a way that for small changes in density;

that means, for small changes in temperature this can be given by a linear interpolation.

So, that is exactly what this has been alright and now we see that the momentum and the

energy equations  are  intricately  coupled  to  each other  because  this  has  got  minus T

infinity  over here alright  and if  you write  the energy question in this particular  case

which is du dT by dx plus v dT by dy is equal to alpha T squared by d x square that will

be what it will be alright.

So, that expression you see that there is velocity of course, that is already given that they

would have the velocity terms. Now, you have the temperature term also appearing in the

momentum equation which was not the case in the case of your forced convection right.

So, this complicates things a little bit; that means, the velocity now is also dependent on

the temperature to a certain extent right and the temperature is also dependent on the

velocity  that  is  obvious  because  the  heat  transfer  has  got  both  velocity  as  well  as

temperature right. So, this complicates the issue a little bit. But we are trying to attempt

something like a scaling argument as we have been following the we follow the trend

like scaling, similarity, integral in whatever ways we can provide more insights into the

problem right.

So, that brings up to the next part of the argument now that we know what the governing

equations actually look like with Boussinesq approximation. If the temperature variation



is very large say 100, 200 degree Celsius for example, this will not be this simple you

have to solve the full equation right. You have to solve the full equation, you have to take

into account second order effects that comes into the picture and you have to do a full

fledged coupled solution of the whole thing. So, that is also possible in plasmas and other

things. You can actually need that kind of an equation.
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So, let us look at the scaling arguments. So, let us target the energy equation first because

this is normally what we do. Now of course, delta T is given by that delta T alright, x

scales as T as delta T that we have already shown earlier, v scales as delta T by H and

this  will  be  like  delta  T by  delta  T right.  These  are  the  4  expressions  that  you,  3

expressions  that  you  get,  got  it.  So,  that  is  the  first  thing.  The  continuity  equation

therefore, all to 0 alright.

So, this is given by delta T u delta T scales as v by H right. So, this leads to v scaling as u

H by delta T correct. Now, if you back substitute this particular expression over here now

alright, if you back substitute that expression over here you will find both of them will

scale as u over delta T alright that is usually the case. So, this will scale as alpha delta T

by delta T square or in other words you will get u scaling as alpha by delta T that is a

first 1 and v scales as alpha H by delta T square right. Remember your u is the velocity in

the x direction that is a nominal velocity v is the velocity in the y direction which is the



principal component of the velocity alright. So, you can see that this is the logic, this is

the logic.

And you can also see that why u and v, why v will be higher than u because H by delta P

is basically a much much larger number, much much larger than 1, alright. So, these are

the two expressions that you are getting as of now, got it. From the scaling argument v is

proportional to alpha H by delta T square.
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Now, from the y momentum equation let us attack the y momentum equation now. So, y

momentum equation let us write it once again to be on the safe side. Now, these two will

be the same you know that from your old logic right as we did earlier. So, this will be

like v square by H alright, that would be the logic this will be g beta into delta T right

that would be the scaling natural scaling alright, I need not say much about it. This is v

divided by delta T square. These are the 3 expressions right. This leads to this, this leads

to that.

Now, if you substitute for v which we have already done in the previous page, this one,

right that is alpha H by delta T square alright. So, let us put alpha square H squared by

delta T square divided by H this is still g beta into delta T this is gamma alpha H by delta

T square into delta T squared right. So, that will be the expression right. So, or we get

alpha square H by delta T square delta T square. So, sorry this will be delta T to the



power of 4, because this is g beta into delta T this is gamma alpha H by delta T to the

power of 4.

So, what we do, divide everything out by this particular guy. So, if we divide everything

out by this particular guy we will get alpha square H by delta T to the power of 4, g beta

into delta T this will be a 1, order 1, then gamma alpha H by delta T to the power of 4

into 1 over g beta, delta T got it, set of equations that you get right. Up to this it should

be very clear that why we have got it the way it is, alright.

So, you just substituted and, but you should know the nature of this term this term is

basically convective, this is basically the buoyancy term alright this term is basically the

viscous term right. So, you should know that what are the origins of each of the term that

will come in handy a little later. So, now, that we can do some manipulations and you we

can take this like this, this is alpha square H cube g beta delta T scales as 1, 4 gamma

alpha H cube. So, that is already something that we have.
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Now, these terms are looking very awkward. So, let us define something which can make

it a little bit more palatable. So, define something called a Rayleigh number. What is the

significance of Rayleigh number, we will see in a little bit it is g beta, delta T this is the

definition gamma alpha right. So, that is the Rayleigh number and we are defining it in

terms of H, H is the length scale in this particular number right, Rayleigh number H. So,

now, therefore, it becomes H over delta T 4 Rayleigh number H minus 1, the other one is



a Prandtl number alright. So, that is and then you have 1 and then you have H over delta

T raised to the power of 4 Rayleigh number minus 1.

So, these two expressions look almost very similar except that there is a Prandtl number

inverse. So, if Prandtl number is equal to 1, then of course, all the expressions are kind of

same order. But if Prandtl number is different very high very low in the two extremes

that we are concerned with we would have a very different take on the Rayleigh number.

Now, if Prandtl number is much much greater than 1, this implies that Prandtl number

inverse is much much less than 1 right. If Prandtl number is much much greater than 1;

that means, Prandtl number inverse is much much less than 1, then what will happen is

that  the  inertia  term.  Inertia  term  is  which  one?  This  one  right,  the  inertia  term  is

negligible is not that so. So, that would mean that it will be a basically balance between

viscous and buoyancy; that means, between this term and this term alright. However, on

the  other  side  if  Prandtl  number  is  much much less  than  1,  implies  Prandtl  number

inverse is much much greater than 1 right. In that particular case viscous term becomes

very negligible right viscous term is negligible which would mean that inertia is the same

as the buoyancy, alright. So, then naturally this proves that we have to solve this equation

in two ways, in the two limits in the two extreme conditions, one is for Prandtl number

much much greater than 1, one is for Prandtl number much much lesser than 1 right;

because depending on the terms that we see over here that they are very similar except

they are differentiated by the Prandtl number right.

So, in the next class what we are going to do is that we are going to take each of these

Prandtl number limits alright and try to work out the problem and see that; what are the

key features that come out of each of those Prandtl number situations right and once we

are  done  with  that  then  we  can  move  to  more  formal  analysis  using  integral  and

subsequently similarity transformations.

Thank you.


