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FORCED CONVECTION – TUTORIAL II

So, welcome to the second tutorial session, in which we are going to start with internal

forced convection. So, in this particular case we are going to look at the problem, which

is slightly different from what we did earlier.
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So, here the problem is that determine the velocity distribution corresponding to the fully

developed Poiseuille flow through the annular space,  formed between two concentric

tubes of diameter or radius r1 and ri and r0. So, we have to show that the inner wall shear

stress differs from the value along the outer wall,  and we also have to calculate  the

friction factor for this flow by using a tau wall, instead of the in, and we will come to the

equations and the average tau wall defined based on a force balance type. So, there are a

few small things that we need to do again, it is taken from Adrian Bejan.

So, the problem essentially is something like this. So, you have this inner tube and it is

enshrouded by this outer tube, something like that. The flow is actually well they are

concentric. So, they are basically concentric. So, apologies for my drawing; so, this is the

flow direction. So, that is the flow direction there are a few parameters over here. So, this
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is the center; obviously, So, and this is the corresponding three distances. So, you can say

from here to here, it is basically your r0, r0 from the center from this, from the center to

this, it is r0, from here to here it is ri. So, that is basically the problem, the flow in this

direction it is say x, in this direction it is r x, this is r and this is the direction of the

velocity is u. So, that is roughly the problem that there are basically two cylinders, one

inside the other, they are not moving as such, but the flow is passed through this annular

passage, very common problem in heat exchangers and other things right shell and tube

heat exchangers.

You can have flow inside the inner pipe also, this is much more simpler; that means, in

through  that  annular  space  you actually  have  a  flow moving  in  the  direction  that  I

indicated in this particular drawing, and this is the radius r, this way is r, this way it is x

right. So, from the center of the inner cylinder to the outer wall is basically your are not,

whereas the center to the outer surface of the inner cylinder, it is ri. So, this is the case

that we get over here. So, now let us attack this problem and see .
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So, the fluid occupies the annular space which is ri, r is greater than ri less than r0 . So,

for the fully developed appropriate equation for the fully developed flow is u square, dr

square plus 1 by r du dr 1 by r dp dx or in other words 1 by r, r du dr by dp by dx. So,

that is the combined equation; that is the equation that we have right and the general

solution and the two boundary conditions, we already have solved equations like this,

this is written in the polar coordinates.

So, general solution and the two boundary conditions are u r r square 4 mu, dp by dx plus

c1ln r plus c2. So, u is equal to 0, at r equal to ri, u is equal to 0 at r equal to r0 , that is

thus very simple, because the velocity will be 0 at the inner and the outer wall, it is as

simple as that, because those are the two walls and the inner wall inner pipe, there is no

flow. So, the flow is only there in the annular space, remember that very carefully .

So, now your c1the two constants will be 4 mu, dp by dx, r0 square minus ri square

divided by ln r0 r0 by ri, c2 will be minus r0 square by 4 mu, dp by dx minus c1ln r0 .

So, these are c1and c2. So, now, you can do some of these manipulations, it is going to

be a more complicated expression you can see why this term comes over here, that you

can pay some attention to the slightly unique nature of this. So, the average velocity u, let

us call that u. So, u happening over r0 square minus ri square into pi, 0 to 2 pi, ri to r0 u r

r dr d theta, it is just the integration of the new profile, over that annular space one is r,



and one is the full angle; that means, you have two azimuthally integrate it across the

whole angle right.
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So, once we are done with that. So, u will be equal to r0square by 8 mu minus dp by dx,

1 plus m squared plus 1 minus m square into ln m with m equal to ri by r0 . So, the result

is 1. So, this is the average velocity, where m is a just a ratio of the inner and the outer

radius.  So,  the  perimeter  averaged,  wall  shear  stress,  tau  average  is  defined  as  tau

average 2 pi r0 plus ri, 2 pi r0 into tau naught, plus 2 pi ri into tau i. These are basically,

this is the average and these are the individual shear stresses across the two and. So, tau i

is basically du by dr at r equal to ri, it is a simple right thing, which is equal to ri by 2 dp

by dx plus mu c1by ri. So, similarly tau naught is equal to minus du by dr at r equal to

r0 , which is equal to minus r0 by 2 dp by dx minus mu c1 by r0 . So, in the end, the tau

average is basically equal to dp by dx into r0 minus ri . So, that is the form that you get.
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Now, the friction factor f is equal to tau average divided by half rho u square is equal to 2

by rho u, tau average by u. So, the friction factor, which is like 16 by ReDh the friction

factor will become if you put in all the values here. So, the friction factor will become 16

by ReDh which is the Reynolds number based on the hydraulic diameter. So, one plus m

square plus one minus m square into ln by m, ReDh is equal to u into Dh by gamma d h

is equal to 4 pi r0square minus ri square divided by 2 pi r0 plus ri equal to 2 r0 one minus

m. So, that is the final form that you get. So, by this is a very simple exercise I just

needed to do a few integrations. So, there is nothing i mean great about it, but you can

see that this kind of a problem can be easily attacked by from, what you already know it

is a little different it is not flow through a straight channel or anything like that, but you

can still if you know the equations in the polar coordinates with the appropriate boundary

conditions you can solve any problems like these. So, lets go to the other problem.
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So, here and the problem is like this. So, this is like a channel, it is like a channel which

is separated by a distance D and there is a uniform heat flux, that comes in through the

wall q double prime, the flow is laminar the velocity and the temperature profiles are

fully developed; that means, there is a hydrodynamically and thermally fully developed

flow. So, derive the analytical expression for the fully developed temperature profile and

show that the Nusselt number based on hydraulic diameter, and this would be hydraulic

diameter because it is this channel is about 8.235. So, this is the fully developed this like

a parallel plate duct again take it from Adrian Bejan. So, this is D and this is the length of

the channel. So, it is very similar problem what we did earlier, except that the Nusselt

number value, we are kind of expecting is 8.235, if you recall the other values were quite

a bit lower than this, but other than that is a uniform heat flux condition and the flow is

laminar, the temperature and the velocity profiles are fully developed. So, this should not

be a much of a problem to solve we have already solved problems like this, when the

flow was through a pipe right. So, that we have already done.

So, let us move on and try to see, how to attack the problem like this? 
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So, for a parallel plate channel for a parallel plate channel your u y by alpha dt by dx,

remember this equation we always wrote right, but here of course, your u now becomes 3

by 2 u into 1 minus nita square, where nita is basically y by D by 2 right it is like in the

normalized coordinate system, y divided by half the distance between the two plates this

is D and this half is D by 2 .

Now, also we know that dT by dx is equal to dT m by dx equal to 2 q double prime rho

cp d into u, this we already know from your class on the exercises, that we did all right

and T0 which is now a function of x T0 is a wall temperature, which is a function of x

minus d x y divided by T0 x minus D mean which is also a function of x, now should be

a function of phi that is the fully developed temperature profile this is nothing new, this

is all that we have done earlier right the all these things have been done earlier so.

Now, what we do is that we just do a substitution of these into equation one. So, equation

one is our parent equation. So, there this will go and this will go, both of these two things

needs to be substituted there right. So, what we will get is if you substitute it there you

will get 3 by 8 q double prime by delta T 2 d by k one minus nita square delta minus d

square phi by d square. So, where 2 D is equal to the D h, the hydraulic diameter is

basically half the thing and q double prime D h divided by k, k delta T is basically your

Nusslet  number.  This  is  also  known,  this  is  known  this  is  an  introduction  that  the

hydraulic diameter is twice the diameter between the two between the spacing between



the two duct. So, naturally what do you get 3 by 8 Nusselt number nita minus one third

nita  cube,  plus c1equal to minus d phi by d nita.  Once we integrate  it  once and the

constant of integration is already there. So, what the condition the symmetry condition it

is still a symmetry condition will be valid; that means, d phi by d nita will be equal to

zero at nita equal to zero that is the inflection point at the center line , at the center line

the temperature profile has to show that link right. So, that is of course, valid this will

lead to c1 to be equal to zero also . So, now what we do we integrate this equation one

more time because c1 is now gone it is a goner. 
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So, now, we integrate this equation one more time and invoke and the wall condition;

that means, T equal to T0 at y equal to plus minus d by 2 which means also that phi is

equal  to zero at  nita equal  to  plus minus one,  because of the definition  of T0 right,

because it is in the numerator T0 minus T. So, if T becomes equal to T0 the numerator of

phi becomes equal to zero, so that means, phi becomes equal to zero. So, this condition

yields that your c2; that means, the second constant of integration. So, before that let us

write the second constant of integration. So, phi will be equal to 3 by 16 Nusselt number

c2 minus nita square plus one by 6 nita 4. So, once you substitute it over here this will

yield that c2 is equal to 5 by 6. So, c2 will be equal to 5 by 6.

So, now that we have got the things. So, this will lead to now further that phi will be

equal to 3 by 6 Nusselt number 5 by 6 minus nita squared plus 1 by 6 nita to the power of



4. So, the final step for us is to determine Nusselt number from the temperature,  the

mean temperature difference right. So, T0 minus Tm, we already know is one over u by d

integrated minus d by 2 to d by 2 u T0 minus T dy, now you know the traditional, what

we did earlier now you can combine the all the equation this we did repeatedly. So, it

will give you 19 by 3 by 2 Nusselt number from zero to one, one minus nita square 5 by

6 minus nita square plus one by sixth nita  4 d nita.  This actually  further yields that

Nusselt  number  is  140  by  17  which  is  8.235.  So,  this  particular  thing  solves  this

particular aspect of the problem. So, you can see that, this was easy enough solution

except that, you had to take into account a few things, but the procedure was essentially

the same, what we did earlier, there is no deviation in that particular way.
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So, let us look at the final problem of our test set, which is basically problem involving a

water stream is heated in a fully developed flow through a pipe with a uniform heat flux

at the wall, the flow rate is some m dot equal to 10 gram per second, the heat flux is

about 0.1 watt per centimeter square is a uniform heat flux and the pipe radius is about 1

centimeter the properties are given we are to calculate the Reynolds number based on

pipe diameter and mean flow velocity and the heat transfer coefficient and the difference

between the wall temperature and the mean fluid temperature. So, it is something like

this. So, this is how this m dot is coming with some mean temperature, you are applying

a uniform heat flux all over which is q double prime and this is the diameter of the pipe .



So, we have to solve this particular problem, it is an easy problem. So, should not be

very difficult for us to quickly go through the motion.

(Refer Slide Time: 20:17)

So, in this problem which is A5 m dot is equal to 10 gram per second, q double prime is

equal to 0.1 watt per centimeter squared, r0which is d by 2 is equal to one centimeter and

then mu is equal to 0.1 gram per centimeter second and K is equal to 0.006 watt per

centimeter Kelvin. So, the Reynolds number which is rho uD by mu. So, that you need to

calculate. So, we already know that rho u into pi d square by 4 that is basically your m

dot right it is a simple enough thing.

So, therefore, rho u if you calculate it from here it will be something like 3.18 gram per

centimeter  square  second  right  that  should  be  what  it  is  now  your  therefore,  your

Reynolds number therefore, should be 3.18 into 2, I am not writing the unit that you can

try and 0.01. So, this will roughly give you about 637, which is in a laminar regime you

know up to about 2000 is the laminar after that the transition starts around 3000 to 4000,

it transitions fully into turbulent flow. So, the Reynolds number is very easy to compute.

So, this was a very easy exercise.
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So,  now the  heat  transfer  coefficient  calculation,  so,  from the  definition  of  Nusselt

number, we know that it is hd by K should be about 4.364, this is the fully developed

Nusselt number limit that we already calculated. So, therefore, your h should be equal to

4.364 into 0.006, if you have to calculate the heat transfer coefficient that is one by 2

centimeter which is equal to 0.0131 watt per centimeter Kelvin, now c from definition of

h the definition of h we know that q double prime is h, T0 minus Tm. So, we can say that

T0 minus Tm will be equal to 0.1 watt per centimeter square, this is centimeter square

Kelvin divided by 0.0131 one watt which is about 7.64 Kelvin very simply we have been

able to solve this particular problem.
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So, the problem set is up to this much, but what I can suggest to you, you can try a few

more  things,  say  for  example,  when  you  have  two cylinders,  you rotate  one  of  the

cylinder and you can calculate what the flow field looks like, you can rotate the inner and

the outer together, you can rotate them in the opposite direction to each other, you can

rotate one keeping the other fixed. So, there are varieties of problems that you can solve

in which the flow is brought about by the rotation, in that particular case you also have to

take into account, you have to also take into account the boundary conditions, essentially

you start with the same equation now you have to put in in place the boundary condition.

So, this  is  one exercise that you can do rotating cylinders.  A problem which is very

common in the fluid mechanics community, you can also have the wall temperature T0

and T1 and then solve for the Nusselt number and the heat transfer coefficient.

So, that is one interesting problem that you might want to attempt apart which we are, we

have not done during this there is this time period . So, rotating cylinder is important and

it is applicable in many of the cases that we have looked into you can also look into

problems, which involves viscous dissipation. So, viscous dissipation is very important

we just did a little bit of that when we brought about the Brinkman number if you recall

the  last  lectures  in  a  forced  convection.  So,  viscous  dissipation  how  to  incorporate

viscous dissipation in the equations and how if we say that there are two slots and there

is a flow going through it and the distance is so small that there is viscous dissipation and

it is important how would you find out what will be the Nusselt number and other things.



We did a little bit of an example, but you can attack problems like this, once again Bejan

and there are many other books from where you can try this kind of problem. So, viscous

dissipation rotating cylinders then plates with different types of heating, we also did that

then there is like patch hitting. So, here heat is supplied here, there is no heat again heat

is supplied and things like that we did what we call a cumulative a superposition type of

a  problem using  this.  So,  you can  try  problems  in  that  way also  just  by  putting  in

numbers we did it in a more generic way, you can just put in the numbers and you would

be good to go.

So, I think try problems in this area, we will also give a little bit of a problem and answer

set at the end of the course, which you can take a look which you are not going to go

through in the class, but this will be like handouts, where you can see more problems like

this and practice problems from Adrian Bejan and any other book on convective heat

transfer.

Thank you.


