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Lecture – 25
Forced convection – Tutorial I

In this  particular  lecture  we are going to do some work out examples  on the forced

convection. So, that we have finished the forced convection module internal and external

forced convection. So, we will look at some of the sample problems mainly from Adrian

Bejan and we will provide you with a kind of a worked out examples of those problems.

So, the idea behind this is that you should get an idea to approach how to solve different

problems which might  come in handy during your exams and during your industrial

calculations in whatever profession you are involved in. So, you can consider this to be a

forced convection tutorial.

(Refer Slide Time: 00:55)

So,  the  first  problem  in  this  particular  series  is  basically  if  you  read  the  problem

statement again from Adrian Bejan and isothermal flat strip is swept by a parallel stream

of water with a temperature of 20 degrees Celsius and a free stream velocity of 0.5 meter

per  second  the  width  of  the  strip  is  about  1  centimeter  parallel  to  the  flow  the

temperature difference between the strip and the free stream is delta T equal to about 1

degree Celsius. So, the things that we need to calculate is the L averaged shear stress and
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the L averaged; that means, the length that is the length and the width averaged shear

stress and the averaged heat flux between the stream and the water flow. So, that is what

the problem statement is all about.

So, let us see that how we can attack and solve this problem..

(Refer Slide Time: 01:56)

So, moving to our journal, let us call this problem A 1, this is the problem statement. So,

first  and  foremost  what  we  need  to  do  is  that  we  need  to  compute  some  relevant

properties because it is given that the working fluid is water at 20 degrees Celsius and

atmospheric pressure. So, some of the properties, rho for example, is coming out to be

about 0.997 gram per cc, prandtl number is about 7.07, the kinematic viscosity is about

0.01 centimeter square per second, k is about 0.5 9 meter what per meter kelvin. So, that

is in general the properties of water..

So, the L averaged shear stress which is tau w L or tau wall L can be calculated in the

following  order.  So,  tau  L is  equal  to  half  rho  U  infinity  square  CfL skin  friction

coefficient right and we know what the skin friction coefficient is all about rho U infinity

square 1.328 Reynolds number to the power of minus half right this is the relationship

that you already know from your analysis  of a flat plate all  right.  So, the where the

Reynolds number in this particular case is given as U infinity L by a gamma which is

about 0.5 remember that the velocity was about 0.5 for water that that was a velocity of

water and 1 centimeter was the length. So, and it was about 0.01 centimeters square was



the kinematic viscosity. So, this roughly translates to about Reynolds number of 5000

which in the laminar range for an external boundary layer or external force convection

the transition to turbulence happens much later once we do the turbulence part of this

particular course we will know, but as of now this is a very simple calculation where we

did find out the wall shear stress as well as the Reynolds number now.

Now based on this let us move to the next one..

(Refer Slide Time: 05:10)

So, now you can find out tau wall you basically it is a plugged in values of all these

numbers. So, basically you have half into 0.997 that is the density into and you just do

the unit conversions also which I am not showing over here 1.328 into 5000 to the power

of minus half something like that. So, it will come out to be approximately 0.00234 gram

meter  square  centimeter  cube  second  square.  So,  that  if  you convert  it  to  the  more

traditional unit it is coming out to be Newton per meter square 2 3 4 0 Newton’s per

meter square.

Similarly the L averaged heat flux that is given as q bar double prime w comma L the K

delta T by L nusselt number L bar that is given as K delta T by L 0.664 prandtl number

one third Reynolds number half. So, this is the standard. So, we already are given that

delta T is about 1 degree Celsius if you recall the problem statement. So, 0.59 this is

what per meter kelvin it said it is a good exercise to write and the units, so, that you do

not counter any problem either you convert it to the same unit or you do it at the end



whatever, but then in that case you should write all the units down prandtl number is 7

we already gave that. So, this comes out to be about 5 3 1 7 watt per meter squared.

So, you can see that. So, it was a simple problem that we are able to solve just by using

the correlations that were available what correlations were used for the average nusselt

number we use that correlation and for the average wall shear stress we use the other

correlation. So, basically you can either use the similarity solution from the similarity

solution you have these numbers already at your disposal or these correlations at your

disposal or you can also use the you know the integral formulation use that also because

the constant is only going to vary within 10 percent right. So, this constitutes our first

problem in the series.

(Refer Slide Time: 07:57)

Let us do the second problem which is a little bit more complex than the first and we

start with the easier problem and then we slowly see ratchet it up a little bit. So, that we

see that how this problem actually works. So, in this particular case look at the problem

statement very carefully. So, here what we are considering is the development of a 2

dimensional laminar jet discharging in the x direction. So, this is x and y this is x that is y

into a fluid reservoir which contains the same fluid as the jet right the reservoir pressure

P infinity is constant and the jet is generated by a narrow slit of width D naught this is

the narrow slit the average fluid velocity through the slit is U naught .



Now, if you look at this particular problem very carefully you will find that first and

foremost a few things this problem where is it for example, the smoke that is coming out

of the tailpipe of your car that is very similar to this  because though of course, that

contains carbon monoxide in others, but here if you imagine that air is coming out into a

body of air  this is almost a problem like this.  So, there is this and you get the flow

coming out like that right. So, it is a say example this is air this is also air both can be

water also it can be any other fluid, but it is the same fluid combination so; that means,

one fluid is coming into another fluid where the both the fluid types are essentially the

same right and this opening is very small compared to the extent of your reservoir in

which it is getting flushed right.

So, this is a very typical problem of a laminar jet it is a 2 d laminar jet because it is like a

slot these are like slots right. So, it is coming out through this slot basically. So, that

extends to infinity obviously, whatever it is in the direction in the direction perpendicular

to the board right.

Now, we have sketched something up over here to just give you an idea that how will the

flow velocity actually look like we know that it is coming out to the velocity u naught

which is constant. So, as the velocity as the jet actually spreads in the radial direction

you can imagine that the velocity should slowly drop it will no longer here it is almost

like a top hat kind of a profile right. 

So, as you go here at any particular cross section you expect that this would be the kind

of a profile that we have drawn over here. So, the jet will actually because the area is

actually increasing as you can see by those dotted lines the area is actually increasing.

So, naturally the jet will decay right and the centerline velocity is going to come down

and it is going to assume some kind of a profile like that what is that profile that is an

interesting question.

So, if D x and U x are the jet thickness right; that means, the thickness means this is the

thickness and the centerline velocity which is U x it is the centerline velocity is this guy

over here right at a sufficiently long distance x from the nozzle; that means, it is not in

the  near  field.  So,  relying  on  the  mass  and  momentum  conservation  equations  on

boundary layer theory and on scale analysis in a flow region of length x and thickness D



determine the order of magnitude of D and U in terms of D naught U naught x and the

kinematic viscosity and this is the solution that we need to find out..

So, there is a hint also that is given that you need to integrate the momentum equation

from at any x; that means, at any particular plane you have to integrate it out in the y

direction and this can result in some additional scaling laws, but these are scaling laws as

you can see over here and we have to take care of these scaling laws and we have to find

out that how this jet actually kind of you know behaves.

So, this is the problem that we have posed it is a little different from what you have right

now..
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So, let us check that how this is going to be solved. So, this is a little bit more difficult

problem than what we had earlier. So, let us check out the jet a little bit.  So, it  is U

naught. So, this is coming out like this and this is at any cross section given cross section

this is what the profile actually looks like this is the corresponding U centerline velocity.

So, this is basically your u and v and this is the profile this is your x this is your y and

this is basically your D naught which is basically the diameter of the opening of the jet..

So, for a 2 dimensional laminar jet using this as a slender flow region, we can write the

continuity equal to 0 similarly the momentum and this will be the momentum that we are

going to write in the in the x direction. So, the x momentum and we have applied the



boundary layer approximation this comes from the slenderness, slenderness of the jet or

slenderness of the flow region. So, this particular term as we know this is given as dp by

dx is the same as dp infinity by dx should be equal to 0 because T infinity is equal to a

constant is equal to a constant right.

So, now if we apply the normal scaling arguments, from the continuity equation you get

U by X will scale as V by D right that would be the first scaling that you will have from

the x momentum equation as we know that these 2 terms usually will be of the same

scale. So, you can write it as U square by X right scaling as gamma U by D square. So,

this gives us the equation as U D square is proportional to gamma into X right that is the

entire thing we get..

So,  this just  this  is  the relation number 1 let  us say first  relation that we get this  is

nothing  uncommon  this  is  what  we  got  in  our  traditional  flat  plate  boundary  layer

equation also assuming this is a very similar looking equation right there is nothing very

drastically different about it we have still applied the same slenderness or the boundary

layer type of concept over here and of course, we have taken the dp infinity by dx to be

equal to 0 because we already said that it is flashing into a reservoir where the pressure is

constant .
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Now the second relationship between you need a second relation between U and D that is

because you have one relation there are 2 unknowns you are supposed to find out 2



scales for U and D one for U one for D and you need another equation period right. So,

uniquely follows the second relationship uniquely follows that is the hint that we gave.

So,  let  us take the  x momentum equation  and let  us do it  like this.  So,  integrate  at

constant x at constant x from y equal to minus infinity to y equal to plus infinity we are

integrating the whole thing. So, you have d by dx minus infinity to plus infinity u square

dy plus U infinity V infinity right that is the first term minus u in U minus infinity V

minus infinity right that is equal to gamma d u by dy y equal to infinity evaluated minus

d u by dy at y equal to minus infinity right.

So, basically we have taken a section which you can see over here and we have basically

integrating out across this particular direction that is minus infinity to plus infinity all

right. So, based on that you can see that most of these terms are actually equal to 0 this is

0 this is 0 this is 0 this is 0 because of the far field everything vanishes right it is a far

field. So, at y infinity is a reservoir which was initially questioned right. So, everything

should vanish at the far field. So, similarly things have vanished in the far field this has

vanished this everything kind of vanishes in the far field..

So, all your left with is d by dx minus infinity to plus infinity u square dy is equal to 0

this actually leads to minus infinity to plus infinity u square dy well U naught square into

D naught that is equal to a constant must be because why this is so this is equal to zero;

that means, this must be a constant and what can that constant be the constant should be

the initial momentum that you are flushing out and what is the initial momentum initial

momentum is U squared D naught right. So, that is the initial  momentum that is the

initial momentum of the jet as it comes out of this nozzle right. So, because this is integer

this is act like a constant momentum source the jet is like a constant momentum source

say any integral formulation that has to conserve whatever initial momentum that you

have flushed in right.

So, when you apply the scaling law to this. So, it will be U squared into D should scale

as U naught square into D naught that is your second relationship that you have got using

this additional scaling argument that the jet is a constant momentum source right..
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So, now, you can combine the 2 relationships one is U D square scaling as gamma x the

other  one  is  U  square  D  scaling  as  U  naught  squared  D  naught.  So,  we  have  2

expressions we have 2 unknowns, it is very easy actually to do. So, D scales as gamma 2

third x 2 third U naught minus 2 by 3 D naught minus 1 third right and similarly U

scaling as gamma 1 third x minus 1 third U naught 4 by 3 D naught 2 by 3.

So, you get the expression now you can do the algebra and you can get the forms that we

actually mentioned over there D by X and other things that we mentioned if you look at

what the question was you can cast it D X by D naught in that kind of a way. So, that is

left as an exercise. So, we have derived the main things from this right. So, it was a very

simple thing first we did the scaling a simple scaling argument, next what we did was

that  we used the fact that  the jet  is  actually  bleeding out into a constant  it  is  like a

quotient  reserver  as  a  result  far  field  quantities  vanishes.  So,  the  only  thing  that  is

remaining is that the initial momentum of the jet is actually is a constant momentum

source. So, equating those 2 we related U and D, U naught and D naught and we found

our crucial second expression.

So, now you can take this problem further you can also apply it to a temperature field

you can see several things for example, that the U of the jet shows x to the power of

minus 1 third decay which is kind of logical right; that means, with x this should actually

decay  the  centerline  velocity  should  actually  decay  right.  So,  that  is  one  important



expression that we get and that jet diameter increases by x to the power of 2 third that is

also an interesting observation  right  so; that  means,  the jet  core expands and the jet

centerline velocity decays.

 So, the jet core expands as a 2 third of x; that means, as you march on to x the core of

the jet expands in that 2 third way whereas, the velocity of the jet the centerline velocity

of the jet decays as 1 third minus 1 third of x; that means, it is as x increases this actually

decreases right.  So,  that is  kind of very logical  because we know that the centerline

velocity at different sections if I just plot it like this and it will be like this then it will

spread out; obviously, it will look like that. So, there is a decay and this decay in this

direction x actually is going up right.

Similarly, the core diameter of the jet as you saw over here the diameter is different from

that it is almost like that boundary layer growth right. So, d decays increases with x

increase whereas, our U decreases with x increase which is kind of ideological from the

diagram that we drew in that in the previous statement. So, if you just to recap. So, this

was the way that we solved the problem that this was a constant momentum source that

was the argument that we put forward this was the kind of the profile of the jet very

simple continuity we get this  from the momentum you get this we needed one more

equation connecting U and D because there are 2 unknowns..

So, naturally what we did was that we took the we applied an integral formulation to this

particular  equation  the  conservative  form  of  the  momentum  equation  and  then  we

canceled most of the terms because of the far field nature of the thing we came across to

this expression and from there we got the key relationship the second relationship which

is basically says that the jet is a constant momentum source and based on this we have

basically found out these 2 crucial relationships which also implies that D increases with

x which is logical and U decreases with x which is also logical and they decrease and

increase in that 2 third and 1 third fashion.

So, these are some of the crucial things that we did in this particular lecture we will now

look at a slightly different problem these were both on external forced convection. So,

we in the next one which we are going to do it will be on internal conviction because

internal forced convection that is what we are going to do in the next class.

Thank you.


