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Lecture – 24
 Power law fluids

Let us look at the effect now in the last class we covered all this slug flows basically, let

us look at an example in which viscous dissipation is involved and let us see that if you

have to tackle problems like that how do the equations change because we have not taken

viscous dissipation into consideration as of now.

(Refer Slide Time: 00:41)

So, this particular thing will be effect of viscous dissipation and internal heat generation.

So, basically you have d T m by d x I am just writing the equations and posing the

problem. So, intern this is the internal heat generation term it can be constant usually it is

constant I mean well it need not be constant, but for practical purposes when you have

solving problems you can take that to be a constant this is the dissipation term that we all

know right dissipation the dissipation term here u is; obviously, given as 2 U 1 minus r

square by r naught squared basically r bar square right.

Now, based on this you d u by d r is basically 4 u r divided by r naught squared right this

leads to the fact that your d u by d r square is basically given as 16 U square into r square

by r  naught  to  the  power  of  4  got  it.  So,  this  is  basically  nothing,  but  the  viscous
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component in the fully developed hydro dynamically fully developed and thermally from

the developed regime or in other words if we now back substitute all of these things here

just  I am writing through the math this is just the equation considering all  the terms

together now, this can be integrated out.

 (Refer Slide Time: 03:55)

So, if we integrate the thing out T would be equal to U r square 2 alpha. So, that is the

total expression now. So, this is how you solve a problem like the one that we gave and

here of course, 2 or 3 numbers requires significance one is called the brinkman number

which is basically U square into mu by q s double prime into D right that is a brinkman

number all the brinkman number.

And your nusselt number if you solve this whole expression out it will be around 192, 44

plus 3 lambda where the lambda is basically S D by q S double prime plus 64 brinkman

number got it. So, in the events where basically your dissipation is not important at all

you recover back your original nusselt number. So, this is just to give you a pictorial case

in which we have just highlighted how a problem with a constant heat generation term

can be integrated out, it still requires that expression of T m right in order to solve this in

a full  fledged manner because we do not know what this T m is going to be. So, it

involves a map it involves the same thing, but this is how the equation is actually posed

right.



And the 2 key numbers that are concerned with is basically the brinkman number comes

into the picture you should ideally try as a homework problem to solve for this nusselt

number and show that this is the expression that you get please try it and when you are

doing the course using the equations that I wrote for temperature and using the definition

of brinkman number can you find out and prove that this will be the value of your nusselt

number. So, this would be an interesting problem if you can solve it.

So, next what we do is that right now that I have posed the problem of brinkman number

let us look briefly about the situation of power law fluids, so, the power law fluids.

(Refer Slide Time: 06:43)

So once again the situation  will  be fully  developed velocity  profiles.  So,  this  is  the

typical thing r x. So, u is not a function of x as we had earlier also as we know that tau is

not a function of this anymore that is because it is not Newtonian anymore got it. So, it is

not a function, but still this up to this expression will be valid tau d r equal to d r d p d x

up to this point we can write because it is again a non accelerating framework the shear

stress basically balances the pressure that is all there is right.

So, if you integrate this whole thing out the tau will be r by 2 d p by d x plus C 1 by r.

So, this implies that tau should be finite should be finite at r equal to 0 right this implies

that your C 1 has to be equal to 0 anyway tau has to be finite at r equal to 0, C 1 has to be

equal to 0.



So, therefore, this brings less tau is r by 2 d p by d x that is the expression that we get

after this there is no real assumption of any power law behavior the assumption will

come now right, but we have not represented tau as mu d u by d r either because that

would  be  a  Newtonian  approximation.  So,  here  this  is  the  expression  that  is  valid

regardless even for Newtonian fluids this should be valid right.

Now, we are going to write the expression for the non Newtonian kind right.

(Refer Slide Time: 09:04)

So let us write as tau actually it is tau r x though I am writing it as tau. So, mu minus d u

by d r raised to the power of n where n is an exponent. So, what we do over here is now

what now that if used you can substitute now you have got tau in terms of the velocity

profile you can substitute it will be mu minus du by d r n r by 2 d p by d x or minus d u d

r n minus r by 2 mu d p by d x or minus d u by d r is equal to minus r by 2 mu d p by d x

into 1 by n or minus u will be equal to minus 2 by mu d p by d x to 1 over n or 1 plus n

plus 1 divided by 1 plus n plus 1 plus C 2 right the integration that we are performing go

to the next page.



(Refer Slide Time: 10:41)

So, u should be equal to 0 and r equal to R capital R there is still the no slip condition.

So, minus 1 over 2 mu 1 over n d p by d x 1 over n r 1 plus 1 plus C 2 is equal to 0 or C 2

is equal to minus d p by d x 1 over n plus r 1 over n plus 1 or minus u is equal to, but it

are how do you will be this is power. So, that should be kept in mind this n into n plus 1

just long equations.

(Refer Slide Time: 13:01)

So, your u average should be equal to, that is a total thing now if n is equal to 1 which is

basically  nothing,  but  your  nothing,  but  the  situation  of  your  Newtonian  fluid  right



because n was the power right. So, your u average would be half into half r square. So, u

by u average should be equal to 3 n plus 1 plus n plus 1 1 minus r by capital r plus 1 by

n.

Once again if n is equal to 1 u by u average boils down to 1 minus r by capital r square

there is a 2 in front. So, that is it that is all that is there right. So, once again we have

validated that this is the most crucial expression that will have u by u average in terms of

the quantities right the new quantities.

Now,  let  us  look  at  the  corresponding  energy  equation.  So,  this  was  all  the

hydrodynamics.

(Refer Slide Time: 14:47)

That we did let us look at the energy equation and we are looking at this without viscous

dissipation got it without viscous dissipation. So, once again u by r ms d T by d x d by d

r squared plus 1 by r d T by dr or u average 3 n plus 1 I will find 2 n plus 1, 1 minus r by

capital R n plus 1 by n d T by d x right that is equal to d square T by d r squared by 1

over r d T by d r right.

Now if  we  take  the  constant  wall  temperature  case  wall  temperature  T naught.  So,

therefore, what we will have is g T minus T naught divided by T naught minus T n r bar

equal to r by capital R x bar is equal to x by D divided by prandtl number into reynolds

number D which is also given as the brats number right this part is also very similar to



what we did earlier right. So, if we just substitute all of these things back like what we

did earlier, 1 minus r bar n plus 1 by n d g by 4 g alright. So, this expression is very

similar to that unsteady, but here of course, you have this all these are terms coming into

the picture and basically foiling the whole thing.

(Refer Slide Time: 17:06)

So, once again g at 1 over grads grades is equal to 0 is equal to 1 dg by d r bar is equal to

0 g bar and r bar equal to 1 is equal to 0 right. So, you have your g as r z equal to 4 by g z

alright that is what you have. So, 3 n plus 1 divided by n plus 1 1 minus r bar n plus 1

over R z prime z plus 1 over r, r prime z or plus 1 over r bar 1 minus r bar n plus 1 by n R

bar by R .

Something like that more very very complicated expression of course, the front part still

remains the same that is your z still remains as a function of 4 lambda square by g z right

whereas, on the other site your R double prime by R plus 1 by r bar R by R 2 minus

lambda square 3 n plus 1 by n plus 1 into 1 minus r bar n plus 1 by n R is equal to 0. So,

that is a full expression that if you get.

That is a full expression that you get and g is; obviously, equal to C minus 4 lambda

square by g z into R right that is a total expression. So, this needs to be basically solved

right to do that normally people do that you assume certain profiles and you try to solve

the equations. So, basically you put an assumed profile on the left hand side and try to

guess and if the guess is actually match then you move on.



So, but basically it is the R will be still given by a series solution of this sort c m r to the

power m something like that it will be still given by that. 

(Refer Slide Time: 20:04)

So, if you solve this expression the results will be for n equal to 1 of course, you have

your nusselt number approaching 3.66 now for n equal to infinity your nusselt number

goes up to about 3.264 for n equal to 0 which is basically nothing, but you are a slug

flow solution the nusselt number becomes 5.783.

So, these are the 4 very 3 2 very disparate values of the constant which you can use

basically to solve this expressions right. So, the solution methodology let us talk just a

little bit we do not want to rush. So, if you look at the profile with respect to R you find

that this is not easily solvable expression as you can see no standard things should work

like in the last case. So, you have to assume some kind of a profile for R right and try to

see that by integration and then iteratively you have to solve this expression.

So, once you do that of course, your boundary conditions for R still remains the kind of

like this 0 and R 1 is equal to 0. So, these are your boundary conditions. So, that is the

boundary conditions that you should apply for this. So, the power law fluid as you can

see and this is a very simple power law fluid where it is given as the nth power of the

velocity gradient right and we have seen that of course, our normal Newtonian fluid is

just a special case of this power aw fluid.



But in any case what we have seen out of this is basically you follow a very similar

methodology all you need to do, you need to solve the hydrodynamics first as we did

earlier right now the hydrodynamics will come become a little complex that is what we

showed here let us move on. So, this is the hydrodynamics right this is a special case of

course, when n equal to 1. So, it is a more complex function essentially then what we do

is that once we get this function.

Then we move on to the energy equation what do we do in the energy equation only this

u part is the one that we have substituted right rest of the things more or less remains the

same your exact assumption for g remains the same, r remains the same, x bar remains

the same, x bar is a grads number equivalent to the grads number right. So, what do you

do you substitute this expression here for u and basically solve it in a very similar way

right.

So, what you do once again you do the separation of variable there is a time term and

then there is the corresponding special right and these are the corresponding boundary

conditions. Then what we did we went through the normal process we separated out the

variables the time term or basically the x bar term is exactly the same what we had

earlier it is like an exponential variation only the R term which is basically the spatial

term is very complex because your velocity profile at that independence. So, because of

that we had a profile something like this how we got around this problem we basically

have to iteratively solve this guy right applying the following boundary conditions.

Once that part is done then you can solve it in different limits limiting conditions for the

case of one which is basically the Newtonian you recover the 3.66 which is the case for a

constant wall temperature for a constant wall heat flux it will be a little higher and for n

equal to infinity you get a much lower value which is 3 point well not much lower, but

some lower value and for n equal to 0, we essentially recover back the old slug flow

solution right in this particular case. 

So, this pretty much completes our forced internal convection part of the module. So, we

what  we have done is  that  we have done the external  forced convection  we did the

scaling arguments then we did the internal forced convection right which is basically all

these things that we have covered till now.



Now, in the next class what we are going to do is that we are going to start on the internal

convection.  So,  first  once  again  we  will  do  external  conviction  and  then  internal

convection; that means external natural convection and internal natural convection. So,

natural  convection  is  where  there  is  no  forcing  right  it  happens  due  to  the  density

gradient.  So,  we  have  to  first  establish  once  again  the  equations  look  at  certain

approximations like (Refer Time: 25:00) type of approximation and then try to see that

how this problem can be actually applied to certain cases once again format will remain

the same will still do scaling arguments.

Then we will move on to the to the other stuff right we will find out canonical solutions

to the problems and try to see what are the scaling laws over there you will find some

interesting numbers coming out like Rayleigh number and grashof number and things

like that. So, that we intend to start from the next class before we move on to turbulent

convection in the last few lectures.

So, we will see you next class where we will exactly look at this natural convection part

that what is natural convection, how it happens, what are the principle equations for the

same right and how would the equations change the energy equations and the velocity

equations  how  would  they  actually  change.  So,  it  happens  due  to  subtle  density

differences and it is buoyancy driven essentially. So, that is what we are going to see

here.

Thanks.


