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Laminar slug flow

So, welcome to today is lecture. We are going to cover Laminar Slug Flow if you look at

on the screen this will be the Laminar Slug Flow.

(Refer Slide Time: 00:29)

So, let us write down first the key concepts. We are going to say that prandle number

almost equals to 0 so; that means, the flow is almost equal. The flow velocity at any

point is almost equal and uniform to the inlet flow condition. So, this also means that the

velocity boundary layer or the hydrodynamic boundary layer takes a very long time to

develop. It does not get developed within the length.

So, the entrance length is basically huge. Not only that, the boundary layer is always thin

for the length of the pipe or the duct that we are concerned over here. So, of course, the

thermal boundary layer develops much faster than that. It is a velocity boundary layer

which is very thin. It is almost like a scenario like this is the velocity boundary layer

there will be a boundary layer; obviously. The velocity is kind of something like that. It

is very top hat kind of a profile and it is almost equal to the velocity U for all practical
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purposes. It is never quite true, but since the thinness of the boundary layer is so thin that

you can effectively imagine that your velocity is almost the same as you.

So, we also take that it is a constant wall temperature. The rest are usual assumptions;

that  means,  t  naught.  There is  a  uniform inlet  temperature.  Which is  t  in.  These are

almost the same as what we had earlier right. So, only thing is that instead of a fully

developed velocity profile, which is a function of r, here we have a constant value of the

velocity which is U. Mainly because of a situation like this. So, this happens a lot in the

food industry because if you are trying to push a solid food or semi liquid kind of a food

through the pipes.

They are usually the boundary layers are very thin. As a result of that your velocities

kind  of  uniform across  the  cross  section;  that  means,  the  r  dependence  is  not  there

anymore. That is what I am trying to say, but if the pipe is very long ultimately this

velocity profile will develop the thinness assumption is going to be no longer valid, but

for all practical purposes, for the current situation that we are dealing with, this pipe

length is short enough it is still long, but short enough relatively. 

So, that the velocity remains the same. As before we now define our non dimensional

numbers or non dimensional variables, r bar is equal to r by r naught, X bar is equal to X

by D,  R e  D into  Pr  number. If  you recall  from the  previous  lectures  g is  the  non

dimensional  variable  which is T minus T naught divided by T in minus T naught.  T

naught being the wall temperature, you notice a wall temperature; the inlet temperature is

T m. Remember that we got from our entrance length analysis that X bar is equal to X by

D Reynolds number prandle number.

So, the energy equation U by alpha dT by Dx. That is a standard energy equation that we

had. Of course,  here we are putting U as the velocity  instead of the fully  developed

velocity profile that you had earlier. U by alpha Tn minus T naught divided by DR e D

into  prandle  number  dg  by  dX  bar,  1  by  r  naught  square  minus  T  naught.  After

substitution let us move to the next one.



(Refer Slide Time: 05:30)

If you take the relevant parameters out or it will be 1 fourth d g by dX bar X square g by

dr bar square plus 1 by r bar.

Now, as we know that one by X is sometimes written as 1 over the grads number. This is

written in some of the books. In other literature you will find, but essentially this is just a

reciprocal of the normalized distance. So, the boundary conditions are, g equal to 0 at r

bar equal to 1, dg by d bar equal to 0 at r bar equal to 0 and g equal to 1 at x bar is equal

to 0. You can easily see the veracity of this thing. At r bar equal to 1, where T is equal to

T naught.  So,  therefore,  g  should be equal  to  0.  r  about  equal  to  0 should  have  an

inflection point.  Therefore,  dg by dr should be equal  to  0 over there because of the

temperature inflection point and at X equal to 0; that means X bar equal to 0 that is at the

point of the inlet where T is basically equal to Tn. So, therefore, g should be equal to 1.

So, these are the 3 boundary conditions that we have.

Once again as I told you earlier that this equation that you have represents a unsteady

heat conduction equation.  Where X bar basically doubles up adds the time scale.  So,

normally in a heat conduction equation or a transient heat conduction equation or 1D

transient heat conduction equation, that is what it is in of course, cylindrical coordinates

you would have that there will be this term will be basically your time and this will be

the corresponding spatial coordinates. So, here of course, the X bar is doubling up as



your time. As the actual length is basically what your time scale is all about. It is very

equivalent though the problem is not the same.

So,  it  is  basically  an  interesting  observation  nonetheless  that  where  your  4X bar  is

basically like your elapsed time got it. 4 X bar is nothing, but like your elapsed time. So,

it represents or resembles rather resembles transient 1D heat conduction equation got it.

The solution will be kind of similar. Let us write it in a more, put the grads number. This

is the most compact way of writing the same equation. Once again you use the separation

of variables. Your g will be basically r 1 r bar, Z 1 2. So, one is a transient part and one is

the spatial part. Correspondingly well in this case both are spatial, but one is like time.

So, if once you substitute it back into this particular equation. What you have is basically,

that is what you have. Or once again I have told you the significance of choosing minus

lambda square, that is because of the reason. Otherwise you get an exponential  term

which increases.  Here the solution  has  to  be  always bounded.  You cannot  have that

exponential  increase.  Otherwise  mathematically  speaking  plus  lambda  square  is  an

equivalent solution so, but in this case from a physical point of view it cannot be the

case. That is why we have written it like that. That we covered in our earlier class, when

we are doing thermally developing flow. So, it is the same analogy actually works here.

(Refer Slide Time: 10:54)

So, or Z 1 is equal to C 1 exponential lambda square by GZ into 4 alright. That is the first

solution  that  you will  have.  Once again  you can  see  that  it  is  exponential  and it  is



negative. So, therefore, with time or with distance the solution is bounded. On the other

hand r 1 is basically C 2 and J naught lambda bar plus C 3 Y naught lambda bar that is a

solution. These are basically Bessel functions of course, as you can see it is of the order

0. 0 order first kind, second kind.

So, J is the first kind Y is basically the second kind. So, that is the solution that you have,

but once again one interesting thing about this particular solution is that let us look at the

corresponding companion ppt. 

(Refer Slide Time: 12:16)

If you look at now a situation like this, where we have basically plotted the functions and

I have marked a few things over here. So, as you can see that at this particular term Y is

basically the second kind. At 0 it goes to minus infinity.

But you know that your g because the r is basically a combination. If you recall what we

did just now was basically that you had r, you had r 1. If we write it here then it is equal

to J naught lambda r bar plus C 3 Y naught lambda r bar correct. These are the 2 things

that we have just now. Of course, as you can see at r equal to 0 therefore, or r bar equal

to 0. This particular term basically blows up. That is because it goes to infinity from what

you can see over here there is a infinity.

So, in order to assure if I write it as g, because what is g is basically nothing, but R 1 into

Z 1 that is g. R 1 into Z 1 is g. In order to keep the g finiteness of g, what we can



technically assure in order to do that is basically to make C 3 equal to 0. So, C 3 has to

be equal to 0. Because otherwise this entire term will blow up at r bar equal to 0. So, that

is the logic that we will apply over here and make that C 3 therefore, should be equal to 0

correct.

So, moving on going back to our journal therefore, your r here in this case C 3 must be

equal to 0. Therefore, your total g will be now C exponential 4 lambda square by G Z

into j naught into lambda r bar. Combining the 2 constants and assuring that C 3 is equal

to 0. Now of course, you have g equal to 0 at r bar equal to 1. So, this of course, implies

that J naught at lambda is equal to 0 as many values of lambda.

So, therefore, your g should be equal to n equal to 1 to infinity C n exponential minus 4

lambda n square G z J naught lambda n into r bar got it. And J naught into lambda n is

equal to 0 got it. So, multi values of lambda n. Also at 4 by G Z is equal to 0 and g is

equal to 1 that also we know. Therefore, n equal to 1 to infinity C n J naught lambda n r

bar is equal to one got it.

Now, taking this forward therefore,

(Refer Slide Time: 15:58)

g is equal to 2 into n equal to 1 lambda e 4 lambda n square into G z J naught lambda in r

bar divided by lambda n J 1 lambda n. This is of the first order Bessel function of the

first  kind.  So,  g  m which  if  you recall  is  the  mean temperature  or  the  mixed mean



temperature. That is given as T naught minus T m divided by T naught minus T n. That is

the mixed mean temperature that we have alright got it.

So, g m in order to evaluate that you already know how to do it, it is integral 0 to 1 and g

r d r, that is what it is. 4 0 to 1 exponential minus 4 lambda n square by G z r bar J naught

lambda n r bar lambda n J1 lambda n dr bar therefore, g m was would be equal to 4. That

is g m for you got it. So, that will be g m. That is the mixed mean temperature what we

defined similarly your nusselt number which will be one of the most important parameter

over here will be see all the series of converges pretty fast. You do not need to consider a

whole lot of terms to get convergence.

So, this is the value of nusselts number at any point; obviously, as X bar approaches

infinity, what happens is that your nusselt number this particular form approaches 5 point

7831. It is a little higher than your other cases. That is because you are dealing with a

uniform flow field right now. So, this is the key value and of course, we have in the PPT.

(Refer Slide Time: 19:16)

We can show that this is how the entire thing actually works. As you can see the, this is a

mixed mean temperature and this is the corresponding value of nusselt number. Once

again it starts off pretty high at around X bar is equal to 0.1. It slowly asymptotes to the

value  of  about  5.7831  and  after;  that  it  is  constant.  Because  that  is  the  thermally

developed regime and the only thing is that here u is equal to capital U. So, that is the

only caveat that we have in this particular case.



So, that is interesting. You should note the difference between this and the corresponding

situation, where the velocity profile was not like this. I would post a problem because of

the constant wall heat flux for the same situation.

(Refer Slide Time: 20:19)

But,  you can solve it  on your own. Once again the flow is a slug flow. The prandle

number goes to infinity goes to 0. Inlet temperature is uniform. This is uniform. There is

a uniform wall heat flux. That is only difference which is q double prime. That is all.

There is a uniform heat flux which is given by q double prime.

So, now you definition of g is T minus T m divided by q double prime r naught by K. r

bar equal to r by r naught, X bar is equal to X by D divided by R e D into prandle

number. So, those are the things that we have. Then you have your u by alpha dT by dX

is equal to d square T by d r square plus 1 by r dT by dr. The same thing is valid now

over here except now your u becomes once again capital U. q double prime now comes

over here because of your definition. This dg by dX bar is equal to q double prime r

naught by K r bar square plus 1 by r bar dg by dr bar.

Now, if you take a few terms off from both sides. Once again your equation remains

exactly the same. Of course, the boundary conditions will be different as you know r bar

square plus dg by dr bar into 1 by r bar. Only thing is that. So, nothing has changed as far

as  the  equations  are  concerned.  They  still  are  the  same.  Except  now  the  boundary

conditions are a little bit different. So, g at X bar equal to 0 is equal to 0. That is obvious



once again because your t in basically equal to t in. That particular case dg by dr bar at r

bar equal to 0 is 0. Because of the finiteness of the whole thing and dg by dr bar at r bar

equal to 1 is equal to 1. Now that is because your heat flux because you have a constant

wall heat flux.

Now, this is because your K dt by dr is equal to q double prime correct. That is because

of that. So, the equations as I said the only boundary condition that has changed is this

guy over here and your definition of g also has undergone a change right. Based on these

2 factors that your g has undergone a change and your dg by dr you have to write the flux

conditions like that if the rest of the problem can be worked out exactly in the same way

as before because this part of the equation does not change at all. It is just the boundary

conditions. Now that you have to apply and then you have to see what kind of answer

that you get.

So, that is what is left as a task, but I have posed the problem and we shown how the

problem actually works nothing more changes except please note that now this is the

way that we have written it. So, here what we do is that in this particular lecture we have

covered the uniform slug flow. 

In which we have shown that though this is an unrealistic situation, but for all practical

purposes in the boundary layer  remains  small  throughout the entire  span of the pipe

length. Then perhaps this is not a bad approximation. It might over predict the nusselt

number by a little bit, but that is so long because your analysis is very simple. And it

almost  represents  like  a  transient  heat  conduction  equation  as  we  saw  where  the

conduction  term is  axial  conduction  term is  or  the  time varying  conduction  from is

basically the axial conduction term.

So, based on this we have formulated we have shown that the limiting case of nusselt

number. At least in the case of constant wall temperature is 5.78 which is higher than the

nusselt number. For both the other cases; that means, for uniform heat flux and uniform

wall  temperature  for  the  fully  developed  thermally  and  hydro  dynamically  fully

developed flows that we did much earlier. The solution is a little bit on errors in the sense

that it involves separation of very and series solutions essentially, but as we know that

they are though they are at infinite number of terms. The series converges usually pretty

fast; that means, the terms do not change progressively gets smaller. So, that you do not



have much of a change as we include more higher and higher order terms. Within 4, 5

terms, 6 terms you basically have convergence.

So, in the next class what we are going to do is that we are going to look at the viscous

dissipation part just a little bit and we are going to post a problem of power law fluids;

that means, fluids which may have, which is not a Newtonian fluid by nature right. So,

they have got a power law behavior. This is not a rheological flow course; that means, it

is  not  deals  with  Rheology  or  complex  fluids.  What  we  are  going  to  do  is  a  very

straightforward. 

There  is  a  lot  people  can  spend  an  entire  course  on  rheological  flows.  How  the

rheological flows? Actually you know the convective heat transfer mode of such flows

where shear is not as such a simple function of viscosity, but in this particular case we

are just going to give a simple example and see how that those problems can be tackled

and move on, if you want a more fully fledged course, you should consult you know

convective heat transfer or heat transfer in the complex fluids.

Thank you.


