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So, let us do the separation of variables.
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So, g as we know is a function of both r bar comma X bar. It is basically Pr bar into TX bar.

That is the situation. Now if we put back substituted in the main energy equation, let us see

what we get. The energy equation is 1 minus r bar square Pr bar into dT by dX bar is equal to

TX P double prime r bar plus 1 over r bar TX bar P prime r bar. That is the total expression

that we get.

Now, of course, here as you can see this is 2 functions. P and T which is a function of r and X

only. So, that is how you could write it in the ordinary differential form. Now, do a little bit of

this. As you see the left hand side and the right hand side, left hand side is only a function of

X; right hand side is only a function of r. This is only possible when they are both equal to

some kind of a constant, which is basically lambda square over here. We have taken minus

lambda square. There is a reason behind it. Like as I said plus lambda square would have

been also and exactly I mean mathematically it is correct. You can actually have a constant,

which is plus lambda square.



Now, in this particular case if we put last lambda square over here, what will look at the first

term right over here? That is T prime divided by 2 T X. So, if we take plus lambda square,

this particular expression is actually going to blow up because it would have been T prime

plus minus lambda square into 2TX. If you plot that if you solve for that it will show an

exponential increase of the temperature, which is basically not a physical thing over here

because  temperature  over  here  cannot  actually  grow exponentially.  As  we  say  that  it  is

bounded. So, based on that we have taken minus lambda square as the limit.

So, T prime plus 2 lambda square into T is equal to 0 or in other words T prime by T is equal

to minus 2 lambda square or ln T is equal to minus 2 lambda square into X bar plus C. This

actually leads to T is equal to C1 exponential minus 2 lambda square X bar. As you can see if

this lambda square was chosen as positive this would have come plus over here. If you would

have come plus then this temperature would have actually shown an increase with respect to

x. So, that is something that is not feasible.

So,  here you can see this  is  almost  like a  time axis.  This  is  of  course,  what  you see in

conduction also that there is a decay. So, this is almost like a time axis the first solution. The

second one which is basically one by r bar P prime plus 1 minus r bar square into lambda

square into P is equal to 0. This particular expression is the Stern Linville type equation. This

is the second part.  You understood why the first part is almost like why we chose minus

lambda square because otherwise it would have grown exponentially which is physically not

possible. The other part is that it is almost behaves like a time axis.

So; that means, that is this x is almost like a time axis x. as x grows this temperature or this

particular  T.  This  is  not  temperature.  This  is  basically  the  axial  variation  part  of  the

temperature.  You can  call  it  that  way that  actually  shows a  decay. So,  this  is  physically

meaningful and it almost like a time axis. The year X is almost like snapshots that you are

taking. As it precedes an X it is like almost it is emerging onto time. Here the X represents

what we call the time axis. It is almost equivalent that you are filming a same fluid with time

at a particular location. There is almost like the equivalence of that.

So, now that we have got that kind of an expression. Now that few more things that we can

write down.
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For example, your q double dot X bar equal to minus K dT by dr at r equal to r naught, which

is basically K into T naught minus T in divided by r naught dg by dr bar at r bar is equal to

one. You can see that this is the heat flux. Then of course, you have your g m X bar which is

given as T naught minus T mean divided by T naught minus T in. This is what we call the

mixed mean temperature.

So, this is gm X which is basically nothing, but the mean temperature. What we have done is

that we have substituted T by T m. That is the only thing. We are calling that as g m. And this

is the heat flux and this is the mixed mean temperature. Similarly your Nusselt number at any

X is given by 2r naught h x by K. So, that is also given. q at any X bar is also given as h x

into Tm minus T naught, which is basically minus h XT naught minus T in into g m into X.

So, this is just substitution of variables therefore, your Nusselt number X is which is 2 q

double prime T in g m X bar into r naught by K equal to minus 2 g m X bar dg by d r bar and

r bar is equal to 1. This is theta. Therefore, you know that your Nusselt number is basically a

function  of  your  X  bar  and  that  was  obvious,  but  we  have  restated  it  over  here  for

convenience that this is what you have. It was not like it was any different.

So, these are some of the fundamental relationships that we have written. Particularly these

expressions are all very important. What is the definition of Nusselt number? What is the

definition of q flux? And what is the mixed mean temperature? These are handy things, which

will come in handy in due course as we will see. The total solution
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for g X bar comma r bar. So, g X bar comma r bar is given as n equal to 0 to infinity Cn Pn r

bar exponential minus lambda n square into X bar. These are basically constants. This is the

total solution.

These are basically your Eigen functions and these are correspondingly Eigen values, got it.

That is the total expression. This is the total expression for the temperature. This is the total

temperature. It is given in terms of the Eigen values and Eigen functions and as well as the

constant. So, basically the main purpose then boils down that how you evaluate this constants

and things like that. q double dot at X bar which is basically the heat flux is basically T

naught minus T in. This has got no bearing because they are constant basically n equal to 0 to

infinity Cn Pn prime 1 exponential minus lambda n square into X bar.

So, this can be further written as 2 KT naught minus T in divided by r naught n equal to 0 to

infinity minus half Cn Pn 1 closed exponential minus lambda n square into X bar. In other

words this can be further simplified and written. Substituting in by G n. Basically substituting

that term within the third bracket and lambda n squared in to X bar. This is the total and I can

write q here. From here to here we have got through these steps based on this. That is a good

thing that we did. How do you evaluate gm X bar?
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That is basically once again if you recall T naught minus T in.

So, at every step we give this expression. So, that you do not lose track this can be evaluated

by integrating.  q  naught  double  X bar  for  0  to  X bar. So,  this  is  almost  boils  down to

something  like  this.  This  enters  with  a  temperature  of  T  in  into  U.  This  exits  with  a

temperature of T m into U. Like this and there is of course, q naught that has been added to

this control volume. That is what we have done. 

So,  q  double  prime from 0 to  X bar. So,  this  is  not  local.  It  is  averaged over  whatever

distance. That is equal to rho C p tm minus T in. T in is basically a constant as we know. So,

therefore,  g  m X is  basically  given as  n  equal  to  0  to  infinity  g  n  by  lambda n  square

exponential and then square into X bar not going through the math details, but this is how you

actually evaluate it.

So, this is the mixed mean temperature. Then of course, you have still the Nusselt number.

The Nusselt number is basically given by 2 by g m X bar dg by dr bar at r bar equal to 1. This

is of course, given as n equal to 0 to infinity capital g n exponential minus lambda n square

into X bar divided by 2 n equal to 0 to infinity g n by lambda n square is lambda and square

exponential  minus  lambda  n  squared  into  X  bar.  So,  that  is  the  solution  for  this.  Now

similarly therefore, we can. Nusselt number we know what will be the final expression. g m

we know what will be the final expression. 



(Refer Slide Time: 14:08)

So, the total solution the total solution is n and 0, 1, 2, 3, 4. Then there is lambda n square

which is 7.313, 44. 61 and 113.9, 215.2, 348.6. The capital G n values which we already

established here are these the series converges actually pretty fast.

So, about 4 or 5 terms are actually what is needed. The series converges for large X bar that

is. Basically X bar greater than about 0.1. It kind of converges. Your Nusselt number based

on this becomes G naught exponential minus lambda naught square into X bar divided by 2 G

naught by lambda naught square exponential minus lambda naught square into X bar. Give

you in the fully developed regime some value of approximately 3.657 which agrees very well

with our estimate of a constant wall temperature that we had earlier. So, that would be very

consistent with this value at the end after the series converges.

So, in between if you want to see that, what is the nature of these curves.
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Take a look at this particular plot over here that we have.
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Now here this is Nusselt number. This is basically your G m. So, as you can see the Nusselt

number starts off very high and right around 0.1 is the 0.1 axis. It converges and comes down

to a value which is 3.66. This is the 3 point we should look at this axis this is plotted in the

primary axis  whereas,  this  is  plotted on the  secondary axis  g  m that  is  the mixed mean

temperature.  So,  that  is  plotted  on  the  secondary  axis.  As  you can  see  the  mixed mean

temperature actually comes down as we increase the as we go along X. That is because once



again g m if you look at it is basically T naught minus T mean divided by T naught minus T

in.

So,  as  we go down as  we increase  in  X.  We can see  that  this  particular  value  of  your

temperature profile becomes smaller and smaller. Because as the mixed mean temperature

approaches the T naught limit that is you have seen that in your laminar duct flow results also

if you recall that what we saw in your laminar duct flow result. What does it show? It kind of

curves up and approaches the T infinity so, it always tries to approach that T naught. If you

recall the last time I mean I can show you that particular plot once again if you have forgotton

about it. 

If you look at the plot for your fully developed regime for fully developed if you recall what

we did, we saw that if this was the temperature profile, this was T naught and if you recall

that your T m continuously approaches. That is the reason why this number becomes smaller

and smaller and smaller. It continuously will fall into the approach. It will start very high

which is natural because the mean temperature at that point of time will be much lower, but

then  it  approaches  that  T  naught  with  time,  but  this  particular  denominator;  obviously,

remains the same that is the initial temperature difference. 

The mean temperature slowly becomes closer and closer to the wall temperature. That is the

reason  because  it  is  a  uniform  wall  temperature  problem  or  isothermal  wall  problem.

Therefore, it continuously goes and kind of meets that continuously should decay even after

you go to the fully developed. After this point you are basically entering into the full later of

that regime.

On the other hand Nusselt number as we can from common sense we can see that the delta T

is very small. So, the Nusselt number value will be very very high. Now, Nusselt number

starts off very high, but with time with distance and it just equivalent to time what happens is

that the Nusselt number slowly approaches this asymptotic limit which is 3.66 which we just

proved that, that is indeed the case.

So, from 0.1 onwards X bar greater than about 0.1. Your Nusselt number starts to show a very

constant value which was exactly what we did in our laminar flow simulation. You know a

laminar flow analysis in the fully developed regime. So, you can understand. You have used a

simple separation of variables. We have got these answers and this answers makes sense. As

we can see that these answers makes perfect sense, when you actually look at the problem,



but at end we have shown through graph that what is the nature of the variation of this and we

also validated that the end of the boundary layer that and at the end of the developing flow,

we still get the same value as what we would have got in your fully developed regime. So,

similar things can be done for constant heat flux as well that is also possible to do and we can

do that as an exercise that is one other thing.

Let us go back to the journal article part once again. So, this is the solution you do not have to

memorize anything. It is basically this is the solution. If you do it properly this is what is

available and most of it is are available in handbooks and stem (Refer Time 20:49) type of

equation you must have solved in your math courses as well. So, this is nothing new. 

But the results that key definitions of g m, Nusselt number, heat flux, how we approach the

problem  those  things  are  very  important.  Remember  one  key  thing  here  is  a  hydro

dynamically  fully  developed  flow  with  a  uniform temperature  inlet  and  a  uniform  wall

temperature. These are the major assumptions that has gone into this.

Now, we can look into a variation of this similar problem which we call as the Laminar Slug

Flow we will introduce the problem here.
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So, Laminar Slug Flow will take up the discussion a little later. A Laminar Slug Flow is

normally happens when prandle number is much low and your U is basically a constant. Now

that is not physical because when you say U is not a pipe flow profile anymore that is just a



constant; that means, that does not it is not physically intuitive and it is not, it does not make

physical sense either.

But; however, if you look at the problem say for example, you are pushing some kind of a

semi solid food you know through a pipe. That you can call something, that the boundary

layers are so thin. That is almost like a uniform profile; that means the flow that does not

have. That is why we say that the Prandtl number is very low; that means, the hydrodynamic

boundary layer takes an enormous amount of time to develop. So, it develops with a very thin

boundary layer by the time the pipe is over.

The hydrodynamic boundary layer has barely developed. But, you see that it is physically

impossible because of the viscous effects.  There will  be as no slip condition,  but for all

practical purposes this boundary layer is so thin. Like I mean it is something like this. This

boundary layer takes an enormous amount of time to develop. That is why I say that Prandtl

number goes to 0 kind of a limit; that means, the thermal diffusivity is very high. This is very

very small. 

So, this is the context of the problem. It is not like that. It is physically meaningful, but all it

means is that your hydrodynamic boundary layer barely develops for whatever may be the

reason. So, then there is a constant. We assume that is a constant wall temperature. Which is

T naught and uniform inlet temperature. Inlet temperature which is T in. These 2 assumptions

are basically still the same.

You can define now g equal to T minus T naught by T in minus T naught. Again the similar

type of definition, r is equal to r bar naught and again X bar is X by D divided by R e D into

P r. So, it still we are in that developing region, but the flow here shows a very interesting

characteristics; that means, it is a constant flow. Again I say it is physically not possible. This

is just for assumption purpose. So, the energy equation P r squared plus 1 over r dt by d r.

This part of the equation is still the same whatever you do. This becomes right. So, that is the

equation that you get.
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So, now or it is a little simpler looking question from what we have because that 1 minus r

square is not there. In some books this X bar will be written as 1 over grades number one

over G z, but it is just how the definition works. Once again this looks very similar that there

is seems to be like a time type of a term on the left hand side and then there is the radial

variation. 

I will write down the boundary conditions that g is equal to 0 at r bar is equal to 1 d g by d r

bar is equal to 0 at r bar is equal to 0 and g is equal to 1 at X bar is equal to 0. These are the 3

sets of boundary conditions that we normally have. So, this is an interesting observation. This

looks  exactly  like  a  transient  heat  conduction  equation.  It  looks  like  a  transient  heat

conduction equation. Looks like a time marching in a cylinder; that means, in cylindrical

coordinate systems.

So, 4 into X bar is something like an elapsed time like an elapsed time. It is exactly like a

heat conduction type of an equation. With that kind of an elapsed time or whether you write it

in terms of X or grades number or 4 by grades number, whatever it is, it is exactly the same.

Both of these 2 terms exactly represents the same thing. So, in the next class what we will

do? We will pick up from here and we will try to finish this Slug Flow analysis. There are a

few other things that we need to solve in the case of a developing flow and in the pipe flow

regime once we are done that we are ready to move into the natural convection.

Thank you.


