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Lecture – 02
Governing equations I – Momentum Conservation

So, welcome to lecture 2. So, in the previous lecture we did conservation of mass, and

we looked at what is convection heat transfer all about. In this particular lecture, we are

going to look at conservation of momentum. Because that was the next step as I said.

Now that we know what conservation of mass is now we move on and see how the

conservation of momentum we will look like so conservation of momentum, right.
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So, we look at the same control volume, there is no need to change that control volume,

right. This control volume is still the same, right. So, what will be the conservation of

momentum  for  this  control  volume  in  any  particular  direction?  Now  the  direction

becomes important, because mass was a scalar, this is a vector quantity. So, you have to

look at actually 3 directions, if it is 2D, you have to just look at 2 directions. So, first

term is  essentially  what we call  the rate  of change of momentum within the control

volume, right. That will be equal to all the external forces that are acting in the control

volume. Plus, whatever is the momentum in minus whatever is the momentum out, right.



Where n is basically any direction of your coordinate system; that means, it will be x y z

essentially. If you deal with spherical coordinates it will be something else, right. So, in

essence this particular form of this conservation equation is basically newtons second

law of motion, nothing like that nothing more than that right. So, there are some external

force terms, there is a rate of change of momentum within the control volume, and then

there is a momentum in and momentum out. So, that is newtons second law of motion

which is  basically  F equal  to m a right.  So,  let  us look at  it  from a control  volume

approach like what we did earlier. So, we look at the same thing.
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Let us look at the x axis, let us take the x momentum equation essentially. And the y and

others will just fall into place. If I do one, you can do the others essentially ok.

So,  let  us  look at  that  what  are  the  different  types  of  forces  that  are  acting  on this

particular control volume. So, on this face if you look at it; so, there is this normal stress

which is acting on delta y face. So, once again the nomenclature remains the same. This

is still delta y, and that is still delta x, delta y delta x right. So, similarly on this side of

the face, what will be the once again using that same Taylor series expansion analogy,

you will get this, am I right? So, that will be the same thing, I am not going through the

details. It will be once again sigma at x plus delta x. When you expand it, you will get

this particular form, correct.



So, the 2 faces in the x direction these are the normal stresses. Then what other form of

stress do you have? You have the shear, right. The shear stress. So, that will be tau y x

into delta x is acting on the x face. Similarly, on the top, you have tau y x plus d tau y x

by d y, right. Into delta y. Once again that same Taylor series expansion into delta x,

right. On the top same thing. So, as you go. So, it is expansion around y, because you are

going across the y face, right. So, these are the surface forces that are acting. So, forces

can be of 2 types one has surface forces and one are body forces.

So, similarly you can have a body force, which is represented by x, multiplied by delta x

into delta y. So, that is a body force. So, most of the useful examples of body force are

gravity is one example of a body force.  So,  we do not know the nature,  we are not

commenting on the nature of the body force we are just putting it as x, right. So, these

are basically the forces that are acting on the control volume, right. So, that takes care of

the first you, if you look at your terms, this would takes care of the sigma F n, right.

These are the forces right. So, similarly now that you have done the forces, let us look at

the mass now momentum in momentum out because that needs to be taken into account

because that is the other part of the puzzle, right.

So, let us take the same control volume, I am not doing it in the same picture, because of

the simple reason it gets very crowded and messy, all right. So, one thing is for sure, that

the momentum that is coming in is rho u square delta y, is it right? On the other side, the

momentum that is leaving the control volume is rho u square plus once again the Taylor

series expansion comes into the picture, it is given by rho u square divided by delta x

with d x into delta y, all right. You understood this part this part is very simple rho u is

basically  the  mass,  rho  u  into  u  is  basically  the  momentum  right.  So,  that  is  the

momentum flux that is coming from inside the control volume.

So that means, that is momentum in this is actually momentum out, right. Is that all? It is

actually  not  the  case,  because  there  is  also  mass  which  is  entering  into  the  control

volume from the y face,  right.  It is there is also mass, and what is that mass that is

entering into the y phase is basically rho v, right.  Into delta x am I right? Now that

particular  mass can be carried in the x direction with a velocity  u,  right.  So, in that

particular case what will happen is, we will have u v into delta x right. So, this is the

mass that is carried in the x direction, right. Similarly, there will be mass which will be



exiting the control volume, but they may be washed away by the new component of the

velocity.

So, that will be given by rho u v that term is common, plus once again the same Taylor

series expansion of the whole thing d y rho u v into delta y entire thing is multiplied by

delta  x,  got  it.  So,  in  the  x  direction  when  you look  at  the  x  direction  momentum

equation, these are the 2 principal clays, this gives you F n or in this case F x. And this

gives you the m the momentum flux essentially, all right. There is coming in and out

right. So now, what we do? We can assemble all these terms together and look at the

individual parts of their share right.

So, for example, on the force side we will have a share on the on the momentum flux

side we should have a share right. So, what will be the share on the momentum flux side?

It is once again momentum in minus momentum out is a very simple thing once again.

So, if you do that, then you what you will get, right? Minus so, this is the momentum

basically in minus momentum out, got it? On the other hand, delta F x on this side, what

that will give you if you expand the whole thing once again? I am not going through all

the steps this you can work out as homework, if you want to just go through all the steps,

but I have given you the basic is basically subtraction it is basically algebra. 

So, sigma x y delta x delta x into delta y, plus x into delta x into delta y, all right. So, this

is the F n terms that you are going to get. So, you have this F x, and then you have the

momentum flux term, all right. On the 2 sides. Now you are left with only one thing, that

is  the  change  of  momentum  within  the  control  volume,  and  what  is  the  change  of

momentum within the control volume? What will be the change of momentum within the

control volume, that is the thing that we are going to look at. So, remove this one. So

now, that we have established that what is going to be the situation ok.

Now, the rate of change of momentum within this control volume, let us go back one

slide up. So, if I draw it here, I think it will be more visible right. So, if you look at the

that is the rate of change of momentum within the control volume, right. It is row u into

delta x delta y, this is the x direction of course. Because once again the direction part is

very important here, right. So, if you assemble all the terms now; that means, we are

gathering now all the terms, right.
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Your equation would look like, and once again I am doing it in 2D, 3D is no big deal you

can just have to do a little bit more algebra than what is required. Rho u v is equal to x

plus t tau y x by d y minus d sigma x by d x, right?

That is what you get. Now you can simplify things a little bit. You can I mean there are

terms which are within the bracket. So, you can basically unfold them a little bit. So,

what you will get? D u d rho d t plus rho into d u d t plus u d rho u d x plus rho u du d x

plus, it is a long expression basically. Rho v d u d y is equal to x plus d u tau y x by d y

minus d sigma x by d x. Now you just gather the terms where the rho can be taken out. D

t plus u d u d x plus v d u d y. The other term why it will cancel, I will say in a second.

Tau y x by d y minus d sigma x by d x, right. Now if you look at that what happened to

the other term that we kind of dislodged. If you can see that the term with that really did

not pay any attention to was basically already incorporated in the continuity equation.

So, that term basically goes to 0, right. So, this is the only term that actually survives. So,

if you do a term by term comparison, this term survives, right. This term survives, this

term survives, correct? This term will survive, what about the nature of the other, 2 terms

because if you take u out of those terms this term. I am putting 2 symbols over here. This

particular the not this particular term, I am sorry. So, that particular term this particular

term, and this particular term will actually go to 0, if you add them that is the basically

the continuity equation that you have right. So, this is the full expression that you will



get. This is what we call the convective acceleration term. It is entire thing, this is the

body force term, right. This is basically the surface force terms, and these 2 are basically

both are surface forces in a way ok.

So, this can be also compactly written in terms of the material derivative, right. This is

once again in the x direction only. Of course, y direction will be very similar to this, but

y u direction is something that we are not really bothered about, right. Now because that

will be essentially the same. Now looking at this particular last expression over here.

And that you have, you say that this does not look anywhere like the equations that we

are most familiar with right. So, what is the most common equation in fluid dynamics,

right. That is given by the Navier stokes equation, right. This does not look like Navier

stokes equation though, right. It does not look because the where are the forms, where is

viscosity where is all these terms. Now to answer those questions this is the most generic

form of the momentum conservation equation. We go to the Navier stokes equation only

after we have taken into account certain constitutive relationships ok.

After we know the constitutive relationships, then only we can go and migrate to the

Navier stokes equation. So, that is the most important thing to note in this particular

thing; that we have to now apply certain constitutive relationships to know. For example,

we do not know what is the nature of tau y x, what is the nature of sigma x; somehow

you have to relate this you know, to the pressure to the velocity field. Unless you can

relate them, this equation you cannot solve in that particular fashion, right. Now most of

you must be must have heard things like you know Newtonian fluids non-Newtonian

fluids  and things like that.  All  it  does is  basically  you have to  cast  this  stress terms

essentially. And the body force term also. Because body force can also have variety of

forms,  but  that  is  relatively  intuitive  you  know  that  gravity  is  the  most  commonly

encountered body force.

So, in order to cast this in terms of the body forces, all right. Or the cast the surface

forces in terms of certain known field quantities is what the purpose of the constitutive

relationships  will  be,  right.  And  that  will  actually  reduce  the  problem  to  the  more

manageable Navier stokes form that you are most familiar with. 
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So, let us look at the constitutive relationships relations. So, the first constitutive relation

is sigma x, right. That is the normal stress is given by the pressure minus 2 mu d u d x

plus 2 third mu d u d x plus d v d y, got it? That is the first term. Then tau y x is the same

as tau x y, all right. This is the stress the shear stress tensor.

Now, you guys are all familiar with tensor notations perhaps right. So, that is a tensor.

So, that is given by mu d u d y plus d v d x. So, these are the cross derivatives of the

velocity. There is a change of u velocity in the y direction, change of y velocity in the x

direction. That is what it is right. So, this is basically what is the Newtonian fluid concept

or newtons law of viscosity, the second relationship that we have put forward over here.

So, this essentially means that there is no resistance to change in shape, all right. And it,

but it resists the time rate of change of shape, the time rate of change in shape, got it?

These are the 2 important things to note. No resistance to change in shape, but resists the

time rate of change of shape, time rate of change of shape.

Now, for incompressible  flow, once again now these are the special  assumptions  for

incompressible flow with constant viscosity; that means, the viscosity does not change

with space. There can be fluids where the viscosity is can change actually spatially or

with the flow field. So, there what we get is basically d v d t is given by is basically the

body  force.  So,  we  have  reduced  this  using  the  constitutive  relationships,  and  for

constant viscosity, this is the term that you are most familiar with this is the Laplace of



the velocity field; which is basically the viscous terms, right. These are the viscous terms

which is viscous stress which is basically the shear stress. This is basically the pressure

term, where does it come from? It comes from here, all right.

And this is basically your convective acceleration, all right. If you look when you are

using incompressible flow, this particular term actually goes to 0. That particular term

actually goes to 0, got it? So, if you do the math after that, you will get that this is the

most  compact  form of  this  equation,  right.  Now mu v, right  which  is  basically  the

viscous term, right. Now for the x direction it can be written as u, right. Which will be

mu d square u d x square, right. Plus, d square u d y square right. So, that is basically the

Laplace of the velocity field, right. And this is the body force term most of the time it

will be like rho g; which is basically the body force, if the z direction and the x direction

actually matches. Otherwise it will come in the y component of the velocity, all right.

So, this is of course, the total equation the total equation. Form now it v will become

equal to u or small v depending on which direction you are applying the momentum

equation with. So, this looks very familiar to you guys, right. So, all we have done is that

we  have  taken  a  control  volume  infinitesimal  control  volume,  we  have  applied  the

conservation of momentum. And by using the conservation of momentum, what we have

achieved?  We have  achieved  that  the  rate  of  change  of  momentum  is  equal  to  the

momentum in minus momentum out, and plus the whatever there are the body forces,

whatever are the body and the surface forces, right. So, the surface forces we already saw

they were the normal stresses and the shear stresses. Body force was basically the gravity

and similar stuff.

So, after we have derived that, we have gone through the constitutive relationships, and

one of the constitutive relationships is newtons law of viscosity, right. So, for Newtonian

fluid and other things, we have been able to prove, right. That this will be the form of the

equation that you will get. For incompressible flow constant viscosity Newtonian fluid

using the constitutive relationships that we just laid down. You would be able to show,

that  this  is  the  entire  relationship,  which  has  got  a  pressure  term  a  viscous  term

remember this is not just a pressure this is the pressure gradient which is important, right.

And then you have the viscous term, you have the body force term, and you have the

term which is related to the convective acceleration. So, this particular equation takes

care of the flow field. So, therefore, when you have a flow field over a flat plate. 



Using this equation over there, right technically you will be able to solve the velocity

profile. And the velocity profile in this case will look something like this; that we will

come a little  later that  what the velocity  profile should look like.  Now this equation

should suffice, should you be able to apply this you should be able to get the flow field

information  naturally  coming  out  of  this  right.  So,  why  I  said  this  was  important?

Because you need to solve the momentum equation before you go to the energy equation.

Energy equation is nothing but conservation of energy this is the same equation, that you

saw in your thermodynamics course, right. But before that you need to know what is the

flow field in nature, as you saw the flow field here it is for example, v is the flow field,

right. The v is the velocity, depends on so many interplay of so many terms. There is a

viscous term, there is a pressure term, there is a forcefield term.

So, all these play a role in resulting in a spatiotemporal variation of the velocity field.

Spatiotemporal velocity field means, that v is a function of x y z and t, all right. So, that

velocity field we should be able to identify through this, got it? So, what we will do

immediately now is basically we are going to look at the third player in this which will

be the energy equation.
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So, energy equation why the energy equation is vital, because of the reason that we said

that  energy  equation  is  nothing  but  the  first  law  of  thermodynamics.  First  law  of

thermodynamics; that means, this is the first law of thermodynamics. So, what does first



law of thermodynamics? Says basically  says energy is conserved, right.  It is nothing

more than that, energy is conserved right. So, and that energy conservation we have to go

in to write it in a slightly different form in the in the in in a field form essentially, right.

So, the energy so, what we will do? We will take that same control volume, and we are

going to work out the math on that. So, we are going to first look at say if this is the

control volume, once again there will be some energy that will be coming in there will be

some energy that will be leaving out, right. So, the energy coming in say it is rho u e; that

means, the flux in the x direction is carrying this much amount of energy into the and e is

basically the internal energy, right. And then there is a delta y. On the other side, if you

just do the Taylor series expansion; for that, you will get d by d x rho u e into delta x 2

delta y, right. So, that is the energy that is going out.

Similarly, there will be energy that will be brought in by this vertical stream, all right.

Which will be rho v e into delta x and what will be coming out will be rho v e plus d by d

y rho v e into delta y into delta x right. So, this is the energy that is coming in this is the

energy that is going out. This is the energy that is coming in the x direction. And it is

being  taken  out  though  energy  is  like  a  mass  right.  So,  essentially  whatever  the

momentum  is  whatever  that  mass  is  bringing  with  it  a  certain  amount  of  energy

associated with it, right. There is a blob of mass that is flowing in, it carries with a with it

certain amount of internal energy. That is what we are actually budgeting for here.

Similarly, there will be a change of internal energy within the control volume; which is

rho e into delta x into delta y, correct? That is the rate of change of internal energy within

the control volume, because of all this flux terms is essentially the same concept, energy

in minus energy out is equal to the rate of change of energy within the control volume

that is what you are most familiar with. E is basically the specific internal energy, right.

We do not know what that is so, but from thermodynamics you are very familiar with

what is called specific internal energy. So, this particular expression basically lays down

like mass. It is m e basically mass into whatever. So, specific that is why it is specific it

is an intensive property right.

So, you multiply it by the mass you get the total energy that is flowing in minus that is

whatever is going out. So, in the next lecture what we are going to do we are going to

take  this  premise  that  we  have  already  laid  down,  we  very  similar  to  your  mass



conservation. And we are going to see that how you can convert this to a temperature

field. Because that is what you need. That is the quantity that you can measure internal

energy is not something that you can measure, right. So, in order to cast it in terms of the

temperature field,  because that will  lay down now the foundation that you know the

velocity field now if you know the temperature field, you also know the continuity, you

would be in a position to solve all the problems later on using these equations. So, that is

what we are going to do next class.


