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Uniform wall temperature

So, last class we did the flow through a pipe, round pipe for uniform heat flux. This time

let us take the case of uniform wall temperature.
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So, this is the other extreme and we will use the same methodology that we used earlier,

but in this particular case only the wall temperature. So, if this is the pipe, once again;

this is the central axis. So, this wall temperature is T naught, T naught now is a constant;

obviously, your heat flux is not a constant anymore, because last class that is what we

saw that your heat flux is a constant, and we could apply some nice little tricks and we

could show that the Nusselt number was approximately 4.36. So, this time we will see

that what the Nusselt number value will be, because that is one of the main purpose.

Once again like in the external flow, here also the main intention is to find out what will

be the value of Nusselt  number? And we showed for that,  you need the temperature

profile.

So, similar to last time this is of course, given its 2 by r naught, this is a common thing

that we wrote. Initially this, if you recall is the average axial velocity; q double prime is



equal to h into T naught minus T m as a function of x, that was also kind of given or in

other words d T m by d x 2 by r naught h; T naught minus T m as a function of x, divided

by rho c p u or d T m by T naught minus T m equal to 2 by r naught h by rho c p u into

the corresponding d x. 

So, I am just using the standard definition that here of course, q, why did I do this,

because my heat  flux is  no longer  a  constant,  because it  is  not  a  constant  heat  flux

problem. So, as you know your mean temperature can only able to be a function of x,

because you by definition, the mean temperature takes into account the radial variation is

its integrated over the radius of the pipe alright. So, it will be only a function of x.

So, therefore, once you and this is the generalized expression, the conservation of energy

expression that we wrote two classes before. So, basically I have done just this much.

Now let us look at; so, now once you integrate the whole thing, it offers you that you can

integrate. 

So, it is basically given as; so, what does this mean? x 1, means x 1 is basically the

region of fully developed flow; that is the fully developed flow starts. There is a fully

developed limit and T m at x 1 is basically the temperature at the fully developed limit at

the starting point of the fully developed regime. And of course, h is n u r naught k by 2.

So, using these two we have got this expression, this full expression.
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So, some interesting points to note about this particular expression is, let me write it once

again clearly, so that you guys can kind of appreciate, where x 1 is the fully developed

limit alright; so, that is the expression. Now using this expression you can see that this is

the start of that, this is the maximum variation of temperature. 

This is the starting point of the fully developed regime; after that you can see that the T

naught minus T m term actually starts to go down exponentially. If you can look at,

because it is exponential minus; so, T naught minus T m this particular expression starts

to come down exponentially; that is what is given by this form of the equation. So, if

once again show it on a scale here, say this is the pipe. These are the two axis is the

center line, this is T naught.

So, T naught is; obviously, a constant, has to be a constant. So, what it implies is that

your T m starts to do this. This is the profile and this is of course, your x. So, this is

actually your T m. So, T m T naught minus T m is basically coming down. Now if you

look at that what was the expression for q double prime; that is the heat flux, it was h

into T naught minus T m at any x. So, naturally what it means is that q is given by this

particular difference between the two temperatures. So, what should be the nature of q, q

should also come down in an exponential fashion. So, in other words this comes down

like this correct. So, there is a d k of heat transfer rate, and there is a d k in T naught

minus T m.

So, basically what happens is that the mean temperature increases, increases, increases

till it kind of approaches the wall temperature. Of course, it is never quite true, because

its  an  exponential  relationship.  So,  it  never  quite  becomes  equal,  but  the  difference

slowly and steadily goes down with x; that  is what you can see from this particular

expression, because its an exponential term involving x. 

So, as x increases this term should come down compared to whatever is the initial value.

So, initial value is this one say. So, let us say this one you can call it as T naught minus T

m at x 1. It slowly comes down from that particular value at the initial condition from the

initial conditions. So, that gives that is an interesting thing. So, compared to compare this

to  the  constant  heat  flux  case,  whereas  we  saw  that  T  naught  and  T m both  were

increasing, but the slopes were the same. 



So, their difference was always the same; that is bound to happen, because your q double

prime is happens to be the same, it happens to be a constant. So, compare this to your

constant heat flux case if you recall; so, that was your T m T naught and T m there is this

constant  difference always that  was maintained;  that  is,  because of the reason that  q

double prime is a constant.

And both of them increased in a constant fashion, both of them increase, they were like

parallel lines essentially, because their slopes were the same and actually the slopes were

a constant; that is why we got the linear variation. So, here of course, the variation of T

m is necessarily exponential in nature, its exponential in nature, it increases exponential

now based on this. So, let us look at the full expression now, if we have to do this.
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So, u by alpha d T by d x; that is essentially the expression that we have, that is the

energy equation we have done it 20 number of times. So, T naught minus T by T naught

minus T m, recall your definition of the fully developed temperature, its g r by r naught,

remember  the Nusselt  number is  still  a constant,  if  you recall  though the modes the

equations.

How we cast? It is very different, but Nusselt number is still a constant, there is no that

Nusselt  number limit  that  we got  through the  scaling  argument  that  Nusselt  number

should be of the order 1, and it will be a constant; that is still valid here. So, whatever we



found about this, about this T naught minus T divided by T naught minus T m equal to g

as a function of r only that it still holds over here. 

So, T in equal to T naught minus T naught minus T m into g r by r naught or d T by d x

or this is g r bar; that is the expression that you get. Now what is the standard thing to use

this particular expression back here in the first term of the series.

So, the first term; obviously, is going to be u, u is given by the hydrodynamically fully

developed profile. So, the energy equation becomes this is the. Ok now also we know d T

m by d x is given by 2 by r naught q rho c p into u; that is also given that is a standard

expression regardless of whatever. So, 2 by r naught into h T naught minus T m divided

by rho c p u correct  and h if  you recall  is  nothing, but Nusselt  number has to be a

constant  from our  scaling  argument,  because  that  part  we  know that  it  has  to  be  a

constant, has to be of the order 1. 
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So, using all these expressions; now, let us substitute it back in the energy equation. So,

the energy equation becomes 2 u alpha or cast it in terms of Nusselt number ok. So, that

is  what  you will  get.  Now of  course,  to  solve  this  equation  you need the  boundary

conditions. So, the boundary conditions will be d g by d r bar is equal to 0 at r bar equal

to 0, at r bar is equal to 0, and g is equal to 0 at r bar equal to 1, why g should be equal to

0 at r bar equal to 1, because what is the definition of g, g is given by T naught minus T

divided by T naught minus T m. So, at r bar equal to 1; that means, at the wall what will



be the value of temperature, it will be the same as the wall temperature. So, naturally this

will  approach  1  or  this  will  be  equal  to  1  at  r  bar  equal  to  1.  And  similarly  the

temperature profile would have a general inflection. So, that d g by d r at r equal to 0 will

be equal to 0.

So,  these  two  boundary  conditions  are  fine.  At  the  same  time  one  more  boundary

condition,  one more thing that  we have to  be consistent  over here,  is  that there is  a

Nusselt number; that is involved in this expression to solve for this Nusselt number, you

have to have a physical and meaningful definition of Nusselt number. You cannot have

an arbitrary solution with any arbitrary value of Nusselt number. 

So, Nusselt number by definition is given by 2 g r bar at r bar equal to 1; that is the

generalized definition of Nusselt number. So, whatever we do, this particular constraint

has to be satisfied, to be satisfied; that means, whatever is a profile for that g. It has to

obey that Nusselt number definition; that means, the Nusselt number has to be equal to

this,  this particular  definition has to be obeyed. Now there is no way of solving this

equation in a normal way. So, you can do numerical schemes and other things ok.

So, if you solve for all those things your Nusselt number value will come out to be 3.66,

3.66 will be the value of your Nusselt number, if you do all the manipulations that I

showed over here. So, this actually shows that the Nusselt number from the uniform wall

temperature is actually a little lower than the uniform heat flux. So, Nusselt number T

naught equal  to constant  condition is about 3.66 Nusselt  number for q double prime

equal to constant; that is about 4.36. both are of the order one, both are constant which

agrees with whatever we did say earlier, but this one is slightly greater than this, slightly

alright greater than this. 

So, you can see that the equations are also kind of very similar that we got the Nusselt

number, definitions are similar, the definition of g is very similar, the definition of T m is

similar. So, everything else is similar except that we have applied. We have basically

applied a new boundary condition and a little bit of a different way to cast the problem to

get to this particular figure ok.

Now, in table 3.2 of Bejan you will have a lot of you know for different cross sectional

cross section pipes.  So,  we have done it  for  circular  cross  section,  say for example,

square hexagon, octagon, these kind of cross sections you can get an expression for the



Nusselt  number,  both  for  the  fully  developed  regime  and  for  the  uniform heat  flux

condition, as well as for the isothermal wall temperature; that means, the constant wall

temperature boundary conditions in all of those cases, you will observe that the Nusselt

number value for the uniform heat flux within a particular family, is always higher than

the corresponding isothermal wall temperature. 

So, that is what you will see always for all the cases, and for fully developed flow for the

circle shows the largest value of Nusselt number. Whereas, at the same thing is valid for

the isothermal wall also for any other cross section, you actually have a reduction in

Nusselt number ok.

So, that is what. So, closer for example, square will show a very low value of Nusselt

number, no means in a relative parlance, it will show a low value, but as you increase go

to more and more higher order polygons; that means, say hexagon, octagon and all these

things; that means, you are closely approaching a circle ,as you increase the number of

sides of the polygon you basically approach a circle, you slowly approach the Nusselt

number limit of 4.36 for a uniform heat flux and 3.66 for a uniform wall temperature.

But 3.2 and 3.3 of Bejan actually reports and I will  provide this  as a supplementary

material. It is actually all these Nusselt number values are compiled. So, you will not

show the details at how they were calculated, but the procedure will be essentially the

same as laid down here. Of course, square and other things will be more 3 d in nature ok.

So,  it  is  a  little  bit  more  complex than  what  you can  comprehend,  but  nevertheless

heuristically speaking circle shows the largest value of Nusselt number followed by the

higher  order  polygons;  that  means,  in  decreasing  order  of  polygons,  you  have  a

decreasing order of your Nusselt number.

So, in the next class we will start doing the things on what we call the isothermal delta, if

the tube is surrounded by an isothermal fluid then what happens.

Thank you.


