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Lecture – 16
Hydrodynamic fully developed flow

So, last class we did that developing flow, but only in a very heuristic fashion. 
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And this  time,  let  us look at  the fully developed flow. Where,  we said that the flow

profile should not change. They look identical; that means, there you can superpose one

on the top of the other with distance. So, fully developed flow.

Now in the fully developed flow, I am writing the full fledged navies stokes equation,

once again. That’s where we will start and we will show that what is the, what are the

terms that we can actually neglect. So, you follow the scaling argument here and we will

try to show that, how we can get to the revised version. So, here x scales as L as before, y

scales as high over D; because the boundary layers have already merged. So, the scale of

y is basically D and u the scale of U is basically u that is the, because we saw it is only

1.5 times the maximum velocity. 

So, which should be the scale is still the same; we are not going up by one order. So, of

course, using this from the continuity equation you have U by L. It should be the same as



V by D. This gives rise to V being equal to U by D by L. Where, L is much much greater

than D correct. So, if that is the case that when L is much much greater than D, you can

take V to be almost equal to 0; in this particular case. So, therefore, d u by d x is equal to

0; d u by d x equal to 0. Therefore, this leads to that u is not a function of x anymore.

You understood the steps. So, we went from the continuity equation, there you show that

V is almost equal to 0 because your [laughter], the length at which you are taking the

year entrance is long pipe basically is much much greater than D. As a result of that

moment V becomes equal to 0; then, by mandate d u by d x also has to be equal to 0. So,

that would mean that u is not a function of x anymore. It can be a function of y; it can be

a function of any other things. But it cannot be a function of x at this particular point

right. So, the momentum equation then, becomes very simple. 

Because, if you look at the momentum equation, the first term vanishes because d u by d

x is not a function of x anymore. And the second term vanishes because V is equal to 0.

So, and if you look at these 2 terms. Now in the momentum equation that is del square u

d x square and y square; of course, we know that x scales as L and y scales as D; L being

much much larger than D. So, that naturally only 1 component survives which is this

one; this goes to 0 because it’s L square. 

So, the momentum equation basically if we write it vanishes and become something like

this; d p by d x equal to gamma, after all these manipulations. Only 2 terms survives this

one and this one that is it. So, that would be an interesting proposition, when you look at

the momentum equation in this particular form, you will find that the flow is obviously,

moving. But it’s a non accelerating flow because the convective derivative which is the

convective part has gone equal to 0. 

So,  there  is  no  convection;  no  convective  derivative.  Let’s  not  say  convection,  no

convective derivative or no convective acceleration; that is equal to 0. So, the flow is

basically happening due to a balance of pressure and viscosity. So, shear is balanced by

the pressure that is what you have; shear and pressure and it’s a non accelerating flow.

This part should be very clear that it, this is only valid in the fully developed regime.

Now, now that we have this particular equation we don’t need boundary layers anymore

and we don’t need scaling arguments anymore, we can simply solve the equation from

the first principles.
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So, we can write the Boundary conditions first. As we write the boundary conditions. So,

let’s take this as x this is y; this being the access, you can have it in any other way that

you want doesn’t matter. So, u is equal to 0 at y equal to plus minus D by 2. The simple

reason is that these are walls. So, the no slip condition applies; no slip. The equation also

can be integrated very easily. 

So, d u d y is equal to 1 by mu d p d x into y plus c 1, that’s the 1st part of the of the

integral and then, you integrate it once again. 1 over mu d p by d x y square by 2 plus c 1

y plus c 2. Using that so, u is equal to 0 and y equal to D by 2 Then you have 1 by mu d p

by d x D square by 8 plus c 1 in by D by 2 plus c 2 is equal to 0. So, that is the first one.

So, in this particular case as you can see. So, this is the full expression that you get.

Now, u is also equal to 0 and y equal to minus D by 2. So, in that particular way you will

have 1 over mu d p by d x D square by 8 minus c 1 by D by 2 plus c 2 is equal to 0. So,

this is the second form that you have. So, there is one more, one more thing that we can

apply that if you look at the velocity profile, it is symmetric. It is a symmetric velocity

profile because on both sides so, there has to be an inflection point. 

At the center which would mean that your d u by d y has to be equal to at y equal to 0

has to be equal to 0 in a sense because a slope has to vanish. So, if you look at this from

here, you will get your c 1 is equal to 0 because the slope will vanish and from the other



part, you can get c 2 is equal to minus 1 over mu d p by d x D square by 8. So, that will

be the other part.
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So, c 1 is equal to 0, c 2 is equal to that. Now if you. So, your total u therefore, becomes

mu d p by d x y square by 2 minus 1 over mu d p by d x D square by 8 or u is equal to

minus 1 over 8 mu d p by d x D square 1 minus y by d by 2 square, got it. This can be

further represented as something like 3 by 2 u 1 minus y by D by 2 square. Where this u

is written as D square by 12 mu minus d p by d x. There’s only 1 pressure gradient. So,

you can write it instead of partial you can write it as an ordinary differential as well.

So, as you can see so, therefore, your final expression for u becomes 3 by 2 u minus y by

D by 2 square.  That  is  the  final  expression  that  you have  where  u is  given in  that

particular functional form. Similarly your f which is your friction factor which is tau y

wall by rho u square can we also evaluated. So, tau wall you can easily evaluate it as mu

into d u by d y at the wall and you can divide it by rho u square. So, all these expressions

you can find out, find out quite easily.

Now, let us talk about for a round pipe. So, this is for a duct, 2 parallel plates. For a

round pipe the essential expression is still the same given by 2 U into 1 minus r by r

naught square in that case. Where this U is basically this is small u by the way this r

naught square by 8 mu d minus d p by d x. So, it is a round pipe like this, this is r naught



which is the radius of the pipe. So, it is very  similar expression. This time, you have to

take care of it by using the using the polar co-ordinates in this particular case.

So, so, what did we do? We found that indeed the u the fundamental take away things, u

is not a function of x; that was the first point that we took. Second point was that flow is

non-accelerating. It is a balance between shear and pressure and there is an exact solution

that exists which is given by this; that would be your fourth point. There is an exact

solution; that means, you know in the fully developed regime. Why did we get away?

Because a non-linear term of the momentum equation got cancelled; Because there was

no convective derivative to begin with. 

So, taking advantage of that we were able to now get to this particular situation, where

the flow velocity actually, there was no acceleration term. So, therefore, it  offered an

exact solution of this particular problem and that is exactly what we did in here. But;

however, a few things to note in the developing region; obviously, this is not true the

flow is accelerating in that particular reference frame u is not a function of f x only, u is

not a function of f x that statement does not hold water. And so, therefore, you there you

have  to  solve  the  whole  momentum equation  which  is  what  we  did  in  our  integral

approach.

So, you can see over here that once the flow becomes hydro dynamically fully developed

it  has  got  an exact  solution;  that  means,  in  the energy equation  where  do you have

basically u t d t by d y and terms like that, it can be easily applied. This u can now be

taken and easily applied over there. You don’t have to you can solve it a priori and you

can take that solution and you can apply it in the momentum equation provided, in the

energy equation provided, provided that you are operating in the fully developed regime

of both the cases. 

That means, you are in the hydro dynamically fully developed regime. And of course, the

temperature or the energy equation is also in the thermally fully developed regime. So, or

it can be the at least the flow has to be hydro dynamically fully developed, in order to

apply that u and directly place it over here. So, that is what we have done and for the for

the round pipe we have seen that we have given an expression for the round pipe as well.

Now, let us see that for temperature, what are the key concepts that one needs to learn

before one takes up this particular problem?
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So, let us introduce the concept of Mean temperature, in fully developed flow. What do

we mean by that? Let us take a pipe, round pipe. As I say round pipe and ducts they are

not very different. This is of course, the centre line. This is of course, r naught theta is

obviously, in this direction. So, it is theta symmetric. So, this way is x that way is r.

So, there is of course, an m dot amount of fluid that is flowing through this particular

pipe. There is a net heat transfer that is happening from the wall into the fluid, as it

passes  through  a,  through  this  pipe  and  particularly  we  are  interested  in  this  small

segment that you see over here. And that is what we are most interested in. So, we apply

first law, the first law of thermodynamics over here. So, we say that q double prime just

look at the expression 2 pi r naught into d x that is the d x is this elemental section. 

So, this is the total amount of heat that is dumped into that elemental section d x leading

to m dot. So, the m dot is a mass flux that was coming in. So, the enthalpy of the fluid

should have increased in this particular fashion. So, whatever is coming out on the other

side should have a little bit more enthalpy than whatever is entering that is because of the

amount of heat that you have actually supplied.

Now, for ideal gas d h is given by C p and d T m where, we are introducing T m as the

mean temperature. We will see what this is in a second, mean temperature. So, T m is

basically the bulk temperature; temperature of the fluid entering the control volume. This

is a control volume. So, the bulk temperature of the fluid that is entering inside into the



control  volume  is  given  by  T  m.  So,  all  that  whatever  may  be  the  temperature

distribution of the fluid doesn’t matter. 

It is the average temperature at that particular section. In this particular section whatever

was the average temperature that is what we have taken, that is your T m. So, this T m

changes by a little bit because you are dumping more amount of heat. There’s a fluid

which is coming with a mean temperature, you have dumped x calories or joules of heat

into the fluid that naturally the mean temperature will rise a little bit. As a result of that

the enthalpy of the fluid also changes by that little bit. So, that enthalpy is given by d h is

equal to C p into d T m, that is a change in enthalpy is linked to the change in the mean

temperature.
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So, normally your temperature T would be a function of both x and r because it will be a

function and it is theta symmetric.  So, therefore, there is no variation with respect to

theta, but with respect to x and r there would be a variation of the temperature.

So, basically your T m is the representation, a representation of bulk or in other words,

average  temperature;  bulk  at  the  average  temperature  that  accounts  for  ‘r’  variation

understand what ‘r’ variation; that means, is the variation across the radial direction at

fixed ‘x’. So, at any fixed x if you averaged out over r the temperature that you are going

to get is basically your T m. So, you have q double prime 2 pi r naught into d x equal to

m dot C p d T m; m dot C p into d t m.



Now, what will be your m dot in this particular case? m dot can be represented by that

average axial velocity that you have that we just derived a few movements earlier. So,

this can be written as a rho U into A into C p into d T m. Rho U m C p u into d T m or in

other words, you get d T m by d x is given by 2 q double prime divided by r naught rho c

p U. So, this is the average axial velocity that we already derived earlier, that U, that

remember that in the velocity profile if you have forgotten. 

We already had an expression for u; u was 2 U to 1 minus r by r naught square. Do you

recall that? So, this is nothing, but that average velocity that we are concerned with here

now. So, so you can see that for example, even in this particular expression you know

that the u is maximum at the center. So, when you actually put r equal to 0, u becomes

equal to 2 U; that means, twice the average velocity.

Now, this is the average axial velocity therefore, that is what we have used over there.

Remember we said that we are going to use the momentum equation as much as we can.

So, this establishes one fundamental relationship between d T m; that means, the temp

mean temperature and the corresponding velocity and the heat flux. This establishes that

and how the mean temperature varies. 

Now, what is the relationship still between T and T m? That is what we are going to do

before we end this lecture. T and T m, we said that T varies with x and r; T m is basically

takes into account that r variation at fixed x. So, there must be a relationship between T

m and x  which  we need  to  establish.  So,  that  is  what  we are  going to  do.  So,  the

relationship between T m and T over here, if you write this expression; once again in the

proper form; what you will get? This area integral C p T d A, that is a total change if you

take into account, the temperature, this is the actual temperature which is a function of

both x and r. 

So,  you had integrating it  across the area; that  means,  across the cross section cross

sectional area. So, there you have both u this u is the fundamental variable is not the

average and this t is also the native the temperature or the temperature at each point.
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So, based on this expression, also we know that 2 pi r naught d x is given by rho u d C p

d T m, that is also we have just derived. So, therefore, rho u A C p d T m is equal to d the

area integral rho u C p T d A.

Just we have substitute  we are just  replacing the temperature  with that.  So,  in other

words or rho u A C p T m basically have to integrated over the 2 variables, rho u C p T r

d r d theta. This is the area or in other words, this will be U pi r naught square for this,

this is the average area I mean this is the area not average area into T m is equal to 0 to 2

pi 0 to r naught u T r d r d theta or T m is equal to pi r naught square by U 2 pi 0 to r

naught u T r d r d theta. 

So, this is the expression that you get links T m with the corresponding T and h there is

the heat transfer coefficient in all these flows will be given by q double prime into T

naught minus T m. That will be the case for all the, all the all the cases that we are going

to do here.

So, basic point is that we require T in order to calculate T m; otherwise, you cannot

calculate h. So, the problem is not gone you have just transferred the problem to a new

variable which is T m which is nothing but it’s more like than integral approach. Where,

we have basically integrated out the whole thing; in a way that it is understandable. 



And so, we have shown that how the mean bulk temperature is related to the actual

temperature  and  we  have  also  cast  that  the  heat  transfer  coefficient  perhaps  can  be

written in terms of the mean temperature only in this particular case.

So, in the next class we will see what is the nature of this T m; How does it vary with

distance and with different conditions, uniform heat flux or uniform surface temperatures

that we will do in the next class.

Thank you.


