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Arbitrary Wall temperature

So, in the last class, we looked at for the which solution we looked at the momentum part

now it is time to look at the energy part of the equation.
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So, the energy equation can be taken as theta is equal to T minus T naught by T infinity

minus T naught that we said earlier right. T naught minus T infinity is basically given as

C 2 x to the power of n, we do not know the functional form because they may not have

the same functional form as your velocity. So, therefore, T naught rather T is given as T

naught plus C 2 x to the power of n, 1 minus theta right. So, d T by d x equal to C 2 into

n, x to the power of n minus 1, 1 minus theta plus C 2 x to the power of n minus d theta

by d eta into y, C 1 by gamma, m minus 1 by 2 x into n minus 3 by 2. So, it will becomes

equal to C 2 x to the power of n minus 1, n into 1 minus theta eta n minus 1 by 2.

Similarly your d T by d y, if you do follow the same course of math d theta by d eta u

infinity gamma by x. So, you understood what are we what we did. So, it is pretty much

just substituting u infinity as and when it is required right. Because remember u infinity



is still given by C 1 into x to the power of m, that is how this m comes into the picture

right. 

So, similarly delta square T d y square is given by C 2 x to the power of n d square theta

d eta square u infinity gamma into x. Now once again what do you need to do because

your energy equation is d T by d x plus v d T by d y is equal to alpha delta square y by d

y square correct? So, we already have evaluated this, we have already evaluated this, we

have already evaluated this and we already know what is a functional form of u and what

is a functional form of v from our earlier momentum analysis right.

So, it should not be a problem now, what do we do is now put all these terms together

because the new terms we have already evaluated in the same way, that we did earlier .

So, the final form.
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It comes let me just now if m is equal to n equal to 0 typical flat plate boundary layer

solution, what we get is theta double prime this equation will boil down to this particular

form, which is the correct one as we already know from all other analysis. Now if n

equal  to  m;  that  means,  the  temperature  and  the  velocity  external  temperature  and

velocity has got the same functional form, this equation will now become theta double

prime plus half  prandtl  number m plus 1 into f  theta  prime is  equal  to  0 this  is  the

expression that we also used in our suction and blowing. 



So, your nusselt  number will be equal to theta prime 0 into Reynolds number to the

power of half here what has happened is that prandtl number has been substituted by

prandtl  number as m plus 1 right.  So, it  is like a pseudo prandtl  number. So, Eckert

actually integrated it integrated this once again this kind of thing has to be solved by

knowing what  is  the functional  form, integrated  it  with theta  0 equal  to  0 and theta

infinity is equal to 1. So, if you look at the presentation format once again.
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So, this is  basically  the expression in the line that it  is  given as a solid line,  that  is

basically the correlation that you are most experienced with, it is plotted with terms of

prandtl number. So, as you can see in this particular configuration once again you have

beta equal to 0.5 in n equal to 0, beta equal to 0 n equal to 0.5. So, these are do not be

bothered about the constant heat flux on the constant boundary profile.

It is not the point over here, but you can see that this is plotted with respect to your

prandtl number. So, prandtl number greater than 0.5 the correlation works pretty well

basically  this  0.332 into prandtl  number to  the power of  one-third correlation  works

pretty well.  Here also can look at table 2.3 of Bejan in order to see that what is the

solution for theta for different m. So, that what we are going to do in the next class we

are going to give you a chart in which we are going to say that this is the table, which

contains all the values of beta. So, based on this we have pretty much finished the case of

Falkner Skan with the exception that I will provide a table which may be which will be



added with this particular class, where we will say that what is the basic case of basically

suction and blowing what is the m parameter all about right ok.

Now, without in order to finish off the external flow, there is one more thing that we need

to address which is called the arbitrary wall temperature.
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That means, this is a very specialized case and I will show you what that specialized case

is. Say for example, this is your generalized flat plate; this is how the boundary layer

actually develops. So, say in this particular portion between x 1 and x 2 between 2 limits

of this particular profile, the temperature is T w, where T w is greater than T infinity on

the 2 sides of the plate this is still T infinity understood. 

So, it is a plate in which only one segment of the plate is actually at a higher temperature

than the incoming flow field, the other part of the plates are at whatever temperatures in

this  case  it  is  the  same as  the  ambient.  So,  if  the  temperature  was  the  same as  the

approaching temperature, you know quite well that there will be no velocity profile will

be developed right if the if the profile is the same right.

But; however, in this particular case there is one section where the temperature is a little

higher right. So, it is almost like this in this particular section the temperature is higher

exactly like that. So, what you are going to have if the plate was heated from x 1 right

say entire plate was at a temperature T w right, you would get a boundary layer which



will start developing from here right. Similarly if the plate is started it is heated from x 2

you will actually have a velocity have a thermal boundary layer which will develop from

there right let us call a delta T 1 this is delta T 2 correct. So, you note one thing one

important thing when you solve this particular problem, that the integral energy equation

that we did right energy equation is linear in temperature is not that so? It is linear in

temperature ok.

Hence  to  solve  this  particular  problem  we  can  apply  the  method  of  superposition,

superposition is allowed for given velocity field. See the velocity field is unaltered right

because it is a one way coupling as we said; that means, the change in the density has got

no effect on the temperature. So, the integral energy equation is linear in temperature,

and we can apply the method of superposition because it  is linear  we can apply the

method of superposition provided we know what is the velocity profile going to look like

right. So, this is the way.
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 Say for x 1 this is one of the velocity profile, one of the temperature profile this is the

velocity profile right that develops regardless right that is delta right. So, this is the first

temperature profile where this is T w, which is a plus delta T effect, delta T is basically T

wall minus T infinity. I am summing it with this particular profile once again this is still

delta now it is x 2 right this particular profile has got a temperature like this right which

is delta T 2.



Now, this temperature I am taking it as minus delta T right because here we have a plus

delta  T added throughout  the length of the plate right  is plus delta T throughout the

length, but in reality only the portion x 1 and x 2 is the only portion that is heated. So,

therefore, from x 2 if we take a profile which is minus delta T, then basically you are

taking into account the effect of that, basically you are subtracting that effect out from

the whole picture right. 

So, therefore, if this is the situation for x 1, x greater than x 1 less than x 2, h will be

given as k by x into 0.332 prandtl number one-third Reynolds this proportion remains the

same regardless right. 1 minus x 1 by x to the power of 3 by 4 to the power of minus

one-third; 1 minus x 1 by x to the power of 3 by 4 minus one-third q double prime is h

into delta T that is given as k by x 0.332 prandtl number one-third, Reynolds number

half, delta T 1 minus x 1 by x to the power of three-fourth raised to the power of one-

third. This is for this region right for x when it lies between x 1 and x 2 right for x greater

than x 2 right your q double prime becomes k by x 0.332, again prandtl number one-

third, Reynolds number half.

Now, it becomes a little bit more complicated because now you have the effect of the

previous one as well as now you have this minus delta T effect as well right. So, it is 1

minus x 1 by x to the power of three-fourth to the power of one-third minus 1 minus x 2

by x sorry three-fourth raise to the power of one-third this entire thing is multiplied by

delta T, let me write it maybe in a more proper form. 
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So, q double prime is equal to k by x 0.332 prandtl number one-third. So, that is the

expression that you get in together. So, it is basically a reabsorption of heat in the heated

section. Now if there are n such step changes it is possible right you can have n number

of step changes right. So, you can have situation like this right x 1, x 2, x 3, x 4 like that

continued ok.

So, you can have step changes like this, you can have any combination that you want

right. So, if there are n step changes, it becomes a summation now, y equal to 1 to n delta

T i, 1 minus x I by x to the power of three-fourth one-third this is a step changes. So, you

can add all the steps depending on whatever it is like delta T 1 is negative positive, you

can do it in whatever way that you want right. Now if there is a smooth variation q

double prime will be given as 0.332, k by x and the number one-third Reynolds number

x to the power of half 0 to x d T 0 by d eta by eta this is the dummy variable, 1 minus eta

by x this is only raised to the power of three-fourth, 3 fourth and one-third to the top of

that right. So, this actually shows you that this is how the for any type of temperature

profile; that means, if there is a variation in the temperature profile that we have across a

plate, you can actually represent it in this particular fashion right. Now what to do if

there is a similar situation in which we have a uniform heat flux kind of a consideration,

how to add those things also ok.



So, that will take a little bit of time. So, what we are going to do is that we are you

remember last class we actually posed that what happens when there is a uniform heat

flux situation right. If you recall that is what we did in the last class where we said that if

there is a uniform heat flux, the integral formulation how it can be done, do you recall

that that was what we actually did. Now if that is the case we what we are going to do in

this  particular  class  or in the next  class,  that  we are going to  look at  that  particular

solution hopefully you guys have already done it by now. So, you can cross check that

what will be the answer. 
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But in any case if there is a let me just give you the general profile for a uniform heat

flux consideration, when there is an unheated again there may be an unheated section

right the this is delta still goes up as it is from x 1 you are pushing in a uniform heat flux

right, let us call that q s double prime. So, you are pumping in a lot of heat flux after say

not x 1 say it is x this distance is say from here to here, from here to here is x naught

right.

Now, this is no this similar than the problem that I gave you, where the uniform heat flux

was everywhere right. So, in this case the answer will be the nusselt number will be 1

minus  x  naught  by  x  raised  to  the  power  of  one-third,  prandtl  number  one-third,

Reynolds number x to the power of half right. When x naught is equal to 0 which is the

case which is the exercise that I gave you the nusselt number is 0.147, prandtl number



one-third Reynolds number x to the power of half right. Now in the next class we are

going to look at how we got this before we wrap up this particular section right that how

we got this particular profile because we did it only for a uniform wall temperature I

gave this as an assignment. So, we are going to do it in the next class and show that how

this thing actually works while on the other hand for any unheated starting length this is

the form that you are going to use right;  that means,  if there is an unheated starting

length a portion of it there is no heat. So, in that case this is the profile that you have to

follow right. 

So, this actually completes. So, what we are going to do as a part of this lecture we are

also going to show you that table, which shows that how the nusselt number and other

thing varies with m. So, that is still remaining that we will add, but in essence the entire

external forced convection is kind of complete with the exception that we are going to

just do the uniform heat flux case, which were given as a homework problem I am going

to just do it here. So, that you can cross check that whether you are on the correct path or

not. So, using this, this is where we wrap off we are going to look at internal forced

convection from next class onwards. 
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 So, just to add as I was stating that, if you look at that with when there is a flow over a

wedge we wanted to know for example, what will be the local nusselt number values and

that is exactly what we are putting up over here.



So, if you look at this list. So, this is your beta the 1 that we said is the wedge angle, this

is the corresponding transform variable which is m over here and these are the different

prandtl number. So, this is prandtl number less than 1 regime, this is prandtl number

greater than 1 regime. So, as you can see beta equal to 0 corresponds to the flat plate

situation right.  So, prandtl  number equal  to 1 is 0.332, as we knew earlier  from our

similarity transformation. 

So, as we. So, this is for different sets of prandtl number, what are the different values

that  you  get.  So,  similarly  m  equal  to  1  basically  corresponds  to  the  hymens  flow

condition or the stagnation flow. So, those values are also given over here. So, as you can

see the nusselt number seems to be a function of the prandtl number for all the wedge

angles, but as you can see that as we increase the wedge angle; that means, you are going

into a more and more convergent nozzle kind of a situation;  that means,  the flow is

accelerating  a  little  bit  more,  you  can  see  that  the  value  of  your  nusselt  number

correspondingly increases alright.

So, this is kind of obvious the same reason that we explained earlier, that when the flow

is  accelerating  you have  a  very  thinner  boundary  layer  so;  that  means,  your  nusselt

number or your heat transfer coefficient should actually go up right because it is inverse

of delta T right. So, this is what you have you have an increase in the nusselt number as

you go on increasing the beta. So, this is what I wanted to show you guys and this is once

again the same table when you actually have suction all these are taken from Bejan.
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So, you can take a look at Bejan and you can see that you can study this different types

of tables. For example, here of course, what we have done in one particular table you

have the nusselt  number, you have the skin friction  coefficient,  and this  is  have the

blowing this  is of course,  over a flow over a permeable isothermal  plate  there is  no

wedge angle over here. So, wedge angle is 0, as you can see that suction and blowing

how does the nusselt number values varies you can easily see that ok.

So, as you know when it is suction the boundary layer is pulled inwards. So, naturally

you have  an  increase  and it  is  pulled  out  it  will  go  to  0  at  some point  because  of

separation. So, this is basically separation all around.
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Similarly for an isothermal edge if you have suction and blowing that part we did not

cover in details, but this table you can still study. So, why some of the data are disjoined?

Because not all  the experiments were done not all the analysis were done for all  the

cases. So, that is precisely what it  is.  So, it  is a wedge where you can actually have

suction or you can have blowing, so that kind of a situation. So, all the datas are basically

compiled over here, once again if you look at the class of the data you will see that;

obviously,  they  also  make  the  same  sense  because  here  you  can  see  this  actually

decreases,  for  the  same  reason  because  you  are  blowing  your  blowing  is  actually

increasing correct.  For any given condition you take any set  any m in this particular

series you will find that it is actually going down ok.

So, the wedge we already know what the wedge angle does right on the top of that if you

have suction or you have blowing, you are basically additive or subtractive kind of an

effect. So, that is what is happening. Moment you have blowing you reduce the nusselt

number  value,  because you are  increasing  the  boundary layer  thickness  in  a  relative

basis. For example, this is the boundary layer this is the nusselt number for no blowing if

you look at this part of the thing right as you go on increasing blowing this actually

reduces how much it will reduce that it depends on the calculations, that depends on the

on the boundary layer profile these done for only 1 prandtl number you can do the same

for other prandtl number also prandtl number of 0.7 is roughly equal to that of air. 



So, that is how this thing has been constructed.  So, we end this  particular  particular

lecture where we actually have shown that with wedge what are the different values of

nusselt number, because you cannot solve the equation exactly. So, you have to show you

the  end results,  and  also  we have  shown that  for  example,  when you actually  have

suctional blowing what will be the values of the nusselt number, and when you combine

these 2 effects together suction and blowing and wedge effect then what you get. So, all

these things are kind of narrated in the table form, and all of them make common sense

whatever we argued about the boundary layer all of them make sense when we actually

solve it and the value seems to agree with our intuitions.

So,  we  end  this  before  we  now  in  the  next  lecture,  we  will  go  to  internal  force

convection.

Thank you.


