
Convective Heat Transfer
Prof. Saptarshi Basu

Department of Mechanical Engineering
Indian Institute of Science, Bangalore

Lecture – 13
FALKNER-SKAN SOLUTION

In this particular lecture, we are going to look at the Falkner skan class of solutions.

(Refer Slide Time: 00:21)

Basically, the Falkner skan transformation to develop, self-similar solutions for wedge

flows. The solutions can we have different types you can see.
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If you look at it here for example, this is 1 type of a wedge and go to the ppt view. This is

1 type of a wedge. The angle subtended beta pi this is 1 type. This is U infinity still T

infinity. This is how the direction of X is actually measured.

This is more like a convergent channel kind of a flow. Whereas, the other part that you

see, this is also another wedge. Where the flow is a little bit diverging this is minus beta

pi. The flow this is the direction of X it is still U infinity T infinity and the angles. These

angles can go, it can be anything that you want. The when it becomes flat like this it

becomes a hiemenz flow when the angle goes to 0, it becomes basically the flat plate

boundary layer. In between and when it goes to the other extreme basically crosses the

90 degree mark you get these kind of solutions.

The Falkner skan class of solutions basically is applicable for any type of wedge where

the incoming flow is always uniform, in terms of velocity and temperature. Based on this

let us go back. First and foremost, the first assumption 1U infinity is equal to C1X to the

power of m. Where does this come from we promised that we will cover the origin of

this? It basically comes from the potential flow theory. Outside the boundary layer the

potential flow theory dictates that C1 must be equal to CU infinity should be equal to

C1X to the power of m.

Similarly, Tminus Tnaught minus Tinfinity where Tnaught is the temperature of the wall

is given by C2X to the power of n. N and m are different as of now remember that here



we try to establish the relationship between the 2 m is equal to beta by minus 2 by beta 2

minus beta. Where beta greater than 0 implies that the flow is accelerating; that means, it

is like a channel flow. Beta less than 0 implies the flow is decelerating; that means, it is

basically a diffuser kind of a flow or a divergent nozzle beta equal to 0 implies a flat

plate. Beta equal to 1 implies a stagnation flow.

You can see the corresponding M’s you can find out from this particular thing. One thing

you can notice is that when beta is equal to 0 M is also equal to 0. The flat plate basically

corresponds to M equal to 0 does that obey with this because as you put M equal to 0 in

this particular expression, your U infinity becomes a constant. Which is the correct thing

for a flat plate with no inclination your U infinity that is your free stream velocity is not a

function of X. That is easily you can see that that is the condition over there.

Similarly, M is also equal to 1 when beta is equal to 1 got it. M equal to 1 because beta is

equal to 1 that would mean that U infinity should be equal to C1 into X. That would

mean  this  type  of  thing  if  you recall  your  fluid  dynamics  a  viscous  fluid  flow this

actually typically corresponds to a stagnation type of flow. This kind of agrees whatever

our strategy was is kind of agrees with the view that we have linked it with beta where

beta is basically the wedge angle.

Let  us  based  on  this,  let  us  try  to  see  how we  can  actually  best  define  the  whole

framework once again the self-similarity solution because that is what we promised.
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Eta is equal to y over delta y U infinity by gamma X. U infinity is equal to C1X to the

power of m. Eta is equal to y. 2C 1 by gamma X m minus 1 by 2. Psi which is the

basically the stream function this we already defined in the general case of suction and

drawing. Some parameter space like this.

Now, let  us  do  the  transformations,  d  psi  by  dX  the  slightly  different  of  how  we

progressed with the self-similarity solution with a flat plate, but we could have done it

also in this way. There are different routes essentially the thing remains the same you are

free to use whichever one you are most comfortable with. By d eta d eta by dX d psi by d

X now eta is given as yC 1 by gamma X m minus 1 by 2. This is also given. Therefore,

this leads to these are all mathematical transformations. It just requires that you just work

out the math in more details which gives you got it. D psi by d eta is equal to. Similarly,

d  psi  by  dX  equal  to,  this  is  after  this  after  this.  These  are  the  different  types  of

transformations that we are actually doing over here.
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Similarly, d psi by dX. This is the string function approach to the similarity solutions that

flat plate can also be done in a very similar way, but we chose to show 2 approaches in 2

problems. That you can adopt any one of them. Therefore, d psi d y. Now, we already

know this is your d u. Therefore, this will be and u is basically equal to U infinity f prime

eta. You can see that it kind of agrees we started with this particular expression first. In



our previous approach you can see that these 2 things are basically equivalent to each

other. Except U infinity instead of a constant now it is C1X to the power of m.
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Now, given by that if I write the full expression because there are a few steps which I am

going to skip over here that you can work out. This is what we wrote in our general case

of suction and blowing also, this comes basically like this. Now if we can do a check if

m equal to 0. Which is basically the flat plate boundary layer your V becomes equal to U

infinity into gamma by X into half minus eta d f by d eta. This is correct. This is quite

correct.

Now, our to go to the momentum equation we need to find out terms like du dx plus du

dy d square u dy dy square etcetera, etcetera. All those things needs to be found out. Let

us write du dx is going to be long because we are carrying a few terms with us now. F

prime plus C1 is equal to got it. That is du by dx we are doing it term by term. That we

can collect it at the end. Du dy will be equal to.
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That  is  the  first  derivative  similarly,  that  is  the  other  term  now  we  feed  all  this

information to the conservation of X momentum conservation of X momentum which is

basically u du dy plus v. Here of course, your pressure term dP by dX is minus U infinity

d U infinity by dx this comes from the rulers all.

Now what we do? Is now you put all these values of u v dU dX and all these values and

the final form of the equation. Therefore, now it is term by term substitution. That is the

total expression that you got, in this particular. As you can see once again if m is equal to

0. What will happen? This equation will become 2 f triple prime plus f into f double

prime this entire term goes to 0. You will get a 0 over here. This will lead to f triple

prime plus half f by f double prime is equal to 0, which is like the flat plate boundary

layer equation. We once again get the same thing the flat plate boundary there.

But this is the total expression when you actually have a wedge solution. This is the

general class of solution more generic than your Falkner, that then your Blasius boundary

layer. 
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The boundary conditions will be u equal to 0 at y equal to 0 and leads to u equal to 0 at

eta equal to 0, leading to f prime is equal to 0. V equal to 0 at y equal to 0 leads to v

equal to 0 at eta equal to 0, leads to f equal to 0. U equal to infinity at y goes to infinity

leads to f prime as eta progresses to infinity is equal to 1. These are the sets of boundary

conditions that you have.

Now as soon as these things are done.  Let  us now look at  what  the boundary layer

profiles are going to look like before we go to the energy equation, and see what the

energy equation should look like.
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Let us look at this particular expression over here. These are for the different betas this is

basically nothing but the velocity profile u by U infinity. As you can see beta equal to 0.

Once again is a flat plate boundary layer let us mark that line. This is basically your flat

plate boundary layer. Basically, a flat plate boundary layer in this particular direction you

can see the boundary layer is basically sagging a little bit, that is where the point is; that

your beta starts to actually become negative and in this particular direction on the other

side  the  beta  is  actually  increasing.  This  corresponds  basically  to  a  diffuser  that

corresponds to a convergent nozzle all.

Now, as you can see from a diffuser what happens very standard things as you I have

diffuser  what  happens  is  that  the  flow  is  basically  facing  what  we  call  an  adverse

pressure gradient. As the pressure as this diffuser angle becomes larger and larger the

flow will at some point of time starts to separate and that separation happens at around

beta equal to 0.198 approximately close to minus 0.2 as you can see you the boundary

layer profile is almost equal to 0 because, the shear stress is nothing but the slope at this

particular point. As you can see the boundary layer is sagging and it is actually equal to 0

at the walls; that means, the wall shear stress should be equal to 0, at this particular point.

As you go on increasing the diffuser part, chances of flow separation increases and as the

flow separation increases, you actually have separation of the shear layer as you have

separation of the shear layer the flow basically therefore, separates on the other side;



however, the boundary layer becomes sharper and sharper as you can see. It becomes

sharper and sharper this is based on the similarity parameter which is basically your eta

and therefore, the shear stress will also become higher and higher.

We can write it here when beta is equal to 0 boundary layer is thin. This is corresponds to

the accelerating flow, which is basically  the nozzle flow. Beta less than 0 means the

boundary layer is thick, this is like a retarding flow. Tau is basically given as u dy at y

equal to 0. Which translates to tau is equal to mu U infinity U infinity by x double prime

is equal to 0. Therefore, c f should become 0 into Reynolds number to the power of

minus half this is a function of beta. Which is quite obvious from this particular graph

that as you increase beta. Your U by U infinity profile changes as a result of that your f

double prime equal to 0 profile also should change because, of that you are going to have

this kind of a thing this is quite apparent.
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In the next plot if you look at this, this is flow over a wedge. This part is once again the

beta the same thing. This is like as I say it flow through a diverging channel and this is

the flow over a wedge.  As you can see that  this  is  basically  nothing but  your shear

stresses the wall shear stress. This is your f double prime equal to 0. As we saw c f was

proportional to this correct.

We can see in this particular case at 0 this is what is whatever the value that is you get

from  yourself  similarity  solution.  As  you  go  to  about  point  minus  0.2  everything

separates  and  you  basically  get  0  shear  happening  over  there  beyond  this  there  is

separation. Here of course, you can see that the shear stress will continuously increase. It

is very much like there suction and blowing kind of a stuff except that here the boundary

layer thickness is varied just by changing the channel wedge. That whatever is a wedge

angle we are varying that and we are able to get this extraordinarily nice profiles coming

out of this.

Based on this, we can certainly say that c f will be reduced is reduced as beta is reduced,

become c f is equal to 0. At the point of separation at the point of separation c f becomes

equal to 0. From this particular profiles that what we have done over here. We saw 2

important things is that when the flow is accelerating the boundary layer is always thin,

when the flow is decelerating the boundary layer is always thick. That is proven through



this analysis and the shear stress which is dependent on the profile the boundary layer

profile essentially, they are basically the angle at the wall that also changes with the

wedge angle.

Now, coming back to our genre. Therefore, we can readily see estimates that wedge flow

is self-similar. It is self-similar and cf is actually given by f double prime 0. Which is a

function of beta that we saw as beta goes up or other beta comes down cf also comes

down. Cf is equal to 0 when beta is equal to minus 0.98, cf goes up when beta goes up.

These  particular  things  and  if  you  look  at  what  we  did,  all  these  mathematical

calculations yielded that this is the basic governing equation. Which we basically solve

in a very similar way that we did earlier; that means, using the shooting scheme and

things like that, but even without the shooting scheme and without all this thing the basic

problem remains that the solution pattern remains the same, except that the boundary

layer is accordingly modified depending on whatever is a value of this m going to be;

that  means,  whether  it  is  this  m is  nothing but your beta.  Remember  n is  your beta

actually and the special forms can all be derived from this particular expression.

We are left with in the next class what we are going to do is that we are going to look at

the energy equation now because the energy equation comes after this. Now we have

solved the momentum we know how it looks like we have explained what is the nature

of this  profile is going to look like, but we are going to see that through the energy

equation what we can get that whether the energy equation is any different or whether it

predicts something very similar that also we will see by looking at the at the results.

In the next class we are going to go into the energy equation mode, but the wedge now it

is  very  clear  that  how we got  those  equations  in  suction  and blowing? Suction  and

blowing physically kind of represents the same thing as your wedge solution. It is all

about changing the boundary layer thickness of the boundary layer. If the boundary layer

profile changes everything changes right from your shear stress to your wall heat transfer

coefficient.

Thank you.


