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Integral Solutions- Energy

So, we have looked at the integral form of the momentum equation we have established

that how the boundary layer thickness comes out to be almost the same, as what we got

through our normal similarity transformation the variations are; obviously, the same.
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So, in this particular class what we are going to do we are going to look at the integral

form of the energy equation, that is what we are going to do here ok.

So, once again as we know that there are 2 forms. So, these are the 2 profiles one can be

delta one can be this. So, we are assuming that this is delta this is delta T and the wall is

T wall this is T infinity. So, our basic assumption is that delta is greater than delta T

which is usually the case, as we said except in liquid metals  and other things this is

mostly the common type of fluids we will actually follow this kind of a profile right. So,

delta is greater than delta T. So, u d T dx plus v d T dy that was the expression that we

initially had right. So, T as y tends to infinity is basically T infinity T at y equal to 0 is

Tw right that is a wall temperature ok.



Once again let us write it in a conservative form got it. So, now, let us integrate got it.

So, this was a conservative form of the energy equation; that means, you include the

continuity and this is we are integrating it with respect to y once again, that is what we

did earlier. So,  once that is done. So, this is equal to 0 right which is basically  true

because at 0. Now we are not considering suction and blowing we have already written if

you want to write it in a proper form that can also be done. So, you can still continue in

that particular way, but here v is equal to 0. So, that is what we have taken. So, this is

also equal to 0 for the same reason because the thermal gradient disappears as we move

to the free stream right.

So, this is  basically  no blowing and this  is basically  the free stream. So, these were

obvious  to  you.  So,  now, what  we can  do is  that,  we can  now write  this  particular

expression the revised form of the equation.
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Now, as got it that is a revised expression right of course, looking at the nature of this

particular term vT delta T and T delta T, we need to find out what this term is all about

right that is what that term is. So, for that we would need to use the continuity equation

right we can use the continuity equation for this right.

So, v delta T it is basically given us 0 to delta T then du dx into dy right. So, that is the v

delta  because  we  needed  that  expression,  which  you can  substitute  it  there  right  of

course, T delta T you already know what T delta T is going to be correct. So, if you do



them.  So,  now, that  you have  got  this  particular  expression  ironed out  now how to

proceed to the problem. So, this particular expression you remember that this is given

that the velocity at the edge of thermal boundary layer right that is what it is correct ok.

So, we can once again apply the Leibnitz rule over here to this particular guy, if we do

that then what we get is v delta T will be given by d by dx 0 to delta T u dy minus u delta

T d delta T by dx right. So, now, we take this value of v delta T and substitute it here

right  we  have  to  substitute  it  there.  So,  let  us  look  at  once  after  substitution  what

happens.
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So, the first term remains the same plus T infinity minus d by dx y equal to 0 right. So,

let us take term by term. So, that we can it makes a lot of sense to do the math properly

the first term let us do that ok.

So, the first term can be written as again applying Leibnitz. So, that you can see how the

Leibnitz is coming in handy right. So, applying Leibnitz we can get this and not writing

the 0 boundary condition anymore which was a part of Leibnitz because you already

know that that is going to be 0. So, that is the first term that we get this particular term.

So, that was this term only this particular term now can be written as that is the second

term of the series right can be written as d by dx 0 to delta T u T infinity dy minus 0 to

delta T u dy d T infinity by dx right. So, that is also that the second term that we are

actually writing over there.



So, now that we have finished writing these 2 terms, now let us kind of assemble things a

little together because we have all this term spread all around assembling you should

practice  this  algebra  well  in  your leisure  time just.  So,  that  you know this basically

algebra is not much of a complicated math either right. So, that is the total temperature

profile that you get.
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Choose these are the boundary conditions, and similar to the velocity boundary condition

right.  So, similar to all  these boundary conditions we get this  also. So, choosing the

temperature profile then putting in the boundary conditions we get this.

So, if you now go through the math by putting in all these boundary conditions, and I

already shown it for the velocity boundary layer there is no reason to show it once again

reiterate it once again for the temperature boundary layer, that how you actually find

them right, but you can readily see depending on our boundary conditions, this is the T

wall temperature, 1 minus 3 by 2, y by delta T very similar to the velocity boundary layer

except that that it is a one minus because of the opposite nature of the slope right. So,

that is what you get right if you plug in all the numbers right ok.

Now, if delta is equal to delta T the velocity solution is valid within the thermal boundary

layer right is valid within the thermal boundary layer that was the assumption that we

made  initially  also  because  it  is  a  thick  velocity  boundary  layer.  So,  whatever  the

velocity solution was is kind of imposed on this as well. So, what we need to do now is



that we need to pass on this temperature profile, inside the full temperature that we got

here. So, call this equation a right that is where we need to substitute and we already

have the velocity expression ironed out right because your u was already kind of known

right. So, it is not very difficult to do this ok.

So, we are not going to go through the whole math steps for that, we can just write down

some of the expressions that we have. So, if you evaluate all these integrals and other

things what you will get is as follows d by dx u infinity delta T delta let us put a bracket

here or let us make this bracket like it. So, that this can become now this is delta T by

delta square minus 3 by 220 delta T by delta to power of 4 close this bracket is equal to 3

by 2 alpha by delta T that is all that you get ok. So, that is all that you get after you

substitute these expressions and if you evaluate.

So,  basically  you have  to  put  in  u by u infinity  that  we already found out  and this

particular guy over here to the previous expression and you just need to go through the

motion now of course, here there is a problem because we have now 2 variables delta T

and delta, to make things a little bit  more dicey right.  So, in order to avoid that,  we

already know that delta is greater than delta t. So, it is very natural if you compare these

2 expressions for example, right which is delta T by delta we know that the fourth order

term will be much much lower right than this a this is 3 by 20 that is 3 by 280. So, there

is one order difference right there right and on the top of that this is square, this is to the

power of 4. So, naturally there will  be more such variations over there.  So, you can

safely assume that 3 by 220 delta T by delta by delta is much much lower than delta T by

delta to the power of 4 is much much lower than 3 by twenty delta T to the power of

delta square ok.

So, that is already an assumption based on the fact that delta is greater than delta T.
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So, based on that So, this simplifies equation simplifies 10 alpha over delta T is equal to

u infinity d by dx delta T by delta square close bracket, we already know that delta is

given by 280 by 13 gamma x by u infinity  that  comes from your velocity  or  slash

momentum analysis that we did and of course, the other boundary condition is that delta

T at  x equal to 0 is equal to 0. So, that is the starting point. So, the solution of this

particular expression becomes delta T by x is 4.528 into prandtl number to the power of

one  third  Reynolds  number  to  the  power  of  x  to  the  power  of  half.  So,  that  is  the

expression that we get delta T by delta.

Now, we already know Nusselt number is defined as hx by k and h is defined as k just to

recap vty equal to 0 divided by ts minus or T wall minus T infinity Ts right that we

already knew right. So, now, it becomes a very simple thing that hx then becomes 3 by 2

k by delta T all right. So, our h x becomes 0.331 into k into x prandtl number to the

power of one third Reynolds, number to the power of x to the power of half right and

nusselt number becomes 0.331 it is the same remains the same prandtl number to the

power of one by third Reynolds number to the power of half right. 

So, this is actually very close to the error is actually less than 2.4 percent. So, you can

imagine  that  it  is  a  very robust way. So, all  we have done is  that  we have got  this

expression and then we just substituted for delta and then we just integrated the whole

thing which gave us this particular form, which preserves once again that prandtl number

to the power of one by third Reynolds number to the power of half dependence and

factor sits in front the error is less than 2.4 percent compared to the similarity right. So, I



think it is a very powerful tool as you can see, without doing much of a thing we are able

to get this perfectly fine result right using just this kind of analysis.

Now, we will this is we did for the constant wall temperature, we can also do the same

for the constant wall heat flux. I am not going to do the full thing, but what I am going to

do is then I am going to post the whole thing and it will be left up to the students to

follow it up in the form of an exercise ok.

(Refer Slide Time: 18:24)

So,. So, uniform heat flux that would mean that, it is the same plate the same type of

boundary layer is growing except that instead of a temperature, fixed temperature you

constantly give a constant heat flux q so; that means, you have put it say for example, on

an isope on a  heater  and you and the heater  is  connected  to  a  power supply  which

supplies a constant heat, the previous case you can consider it more to be you are placing

it in an isothermal path right. So, that you have keeping the plate no matter what the

temperature is always kept at a constant level right, that it is always in equilibrium with

each other. So, this is how you are transferring the heat it can be anything, it can be qs

double prime say for example, is the heat ok.

So, once again the integral formulation once you write it, that does not have any such

problem right. So, you can easily write the same thing in the same way that you did

earlier 0 to delta T u T minus T infinity dy right that is what you wrote earlier, d T by dy

evaluated at y equal to 0 right this expression still remains the same there is no problem



with this your velocity profile also remains the same. So, I am giving you the hints the

velocity  profile still  remains y delta minus half y over delta cube right all  this thing

remains the same got it. Only the expression for h now has to be recast in a certain way.

So, instead of that we are writing it in this particular form wall minus T infinity, and

Nusselt number is q s double prime into x divided by k, T wall minus T infinity right. So,

these are the 2 expressions slight change because of the constant heat flux condition ok.

You can once again assume the temperature to be the same b naught plus b 1, if you do

not  want  to  write  it  in  abcd you can write  it  in this  way also,  y  cubed etcetera  the

boundary conditions now are k d T by dy, at y equal to 0 is equal to q s double prime the

first boundary condition. Second boundary condition is at any x and delta T it is equal to

T infinity which is also not difficult to once again d T by dy at y equal to delta T is equal

to 0 and d square T by d y square at y equal to 0 is equal to 0 right. So, these are the

boundary conditions the 4 boundary conditions that we have. So, applying. So, what you

need to do is follow the motions after this that you need to apply the boundary conditions

,to  find  out  what  the  temperature  profile  is  going  to  look  like.  Once  you  get  the

temperature  profile  it  can  be  easily  substituted  now  into  this  T  minus  T  infinity

expression and you can find it.

So, I will just give you the temperature profile finally, before we wrap up. So, what we

can see over there is that.
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If you substitute all these things the temperature profile will look T infinity plus 2 by

third delta T minus y plus 1 by 3 y cube by delta T square qs double prime by k that is

the expression that we get ok.

Now, surfaces set if you put y equal to 0, the T wall temperature becomes T infinity plus

2 third qs double prime y k into delta T this is the wall temperature if you put y equal to

0 here you will get this right. So, based on these 2 expressions now you can you are in a

position  right  because your  wall  is  now taken care  of,  you know what  is  your  wall

temperature going to be. Now you have to all that you have to do is there to substitute

this expression in the parent equation, and try to see that what will be the final number

right. So, the final expression if you manage to do this properly will be 3.594prandtl

number one-third Reynolds number half. So, the coefficients do change a little bit the

coefficients do change a little bit, but this variation still remains the same this of course,

remains is a different number now right. So, that is your delta so; that means, when you

invert it you are going to get a different expression a lower expression for you Nusselt

number right right. So, based on this your Nusselt number should be if you do it properly

it is going to be 0.417 and. So, the higher value, Reynolds number to the power of half.

So, the Nusselt number will be a little higher because this coefficient is a little lower. So,

that is the reason why you should have your nusselt number a little higher. So, what we

have done? We have shown that for the 2 sets of conditions constant wall temperature

and constant wall heat flux it is possible to cast the expression in a very similar way

right.

So, let us just recap what we just did, let us take the momentum equation what we have

done is that we saw the momentum equation right what we did is that we integrated out

the  y  variation  completely  using  Leibnitz  rule,  and  using  the  pre  existing  boundary

conditions  we integrated  out  the  whole  thing  right.  As  soon  as  we  you are  able  to

integrate out the whole thing we got an expression which has only dependent on x right.

So, there we substituted it and solved we assumed a velocity profile, a velocity profile

which depends on y and then once we did the integration we found that what will be the

delta; that means, the boundary layer thickness. Once we knew delta c f and all the other

parameters we can determine it very easily.

Now, coming back to the temperature profile a basic assumption is that weather is delta

is more than delta T which is the most common type of fluid that we see, that delta is



more than delta T using that expression what we did we started with the energy equation

substituted the velocity  assumed a profile for temperature again integrated the whole

thing out and finally, found out how delta T varies with respect to x. And once delta T is

known as we know the h the heat transfer coefficient is inversely proportional to delta T. 

So,  we  were  able  to  knock  out  the  heat  transfer  coefficient  and  Nusselt  number  is

nothing, but the heat transfer coefficient minus the it is a non-dimensional number. So,

we got the correct expression for that too. So, it is a very simplistic approach by which

we have assumed central pieces that we have assumed polynomial, for both velocity as

well as for temperature right. 

And  this  polynomial  made  sense  because  we  were  able  to  satisfy  all  the  boundary

conditions. In fact, that is how we found out the coefficients of the polynomial and we

found that the results  that we got varied by less than 5 percent right with the actual

similarity  transformation,  which was very difficult  which involved a lot  of math and

other things is a very simple integration just a straightforward integration, substitute the

values of the y; that means, a variation with y integrate out with respect to y and you get

an expression which is a function of x only ok.

So, in the next class what we are going to do we are going to, look at some of the special

cases which we alluded here that they are going be suction and blowing that can be

something called a wedge which seems to be a little different from what the flat plate

boundary layer is. So, we kind of just touched upon that next class what we are going to

do we are going, to look at the general case of suction and blowing and after that we are

going to look at a new class of solutions which is called Falkner Skan which is basically

valid for this wedges those wedge inclined plates and things like that where the free

stream velocity is a function of x so; that means, there will be a pressure gradient within

the boundary there. So, see you next class.


