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So, welcome to this lecture, last class what we did if you recall that we went from the integral

formulation to the differential formulation for and we did it for the continuity equation just to

show that how it actually reduces to the most common form that you are familiar with like

the  divergence  of  velocity  is  equal  to  0  for  incompressible  flow.  For  steady-state

compressible flow it is a little different okay.

Now let us take a look at the momentum equation so I am not going to go into the details of

the  momentum equation  what  we  can  do  is  that  we  can  apply  similarly  the  divergence

theorem okay. And we can show that this is the final form of the momentum equation, right.

Now here we have just done two things the momentum equation.

If you look at it this is still the material derivative of the velocity like we explain the material

derivative in the last lecture okay. So, this is basically nothing but the convective acceleration

okay.  This is the body force term that we already know okay. This is that this is the pressure

and this is basically nothing but the sheer stress term.

Now this you did not see earlier because we will only define something called Tau prime k

relative, right. So, that we say it was the total stress if you recall, right. So, this total stress is



nothing but a combination of the pressure okay that is an identity and the corresponding shear

stress component, right. 

So, the shear stress component is given by this expression okay. So, you can show, so, this is

nothing but the sheer or the sheer and the normal stresses okay and this is the pressure okay.

So, when the body force is gravity this xk becomes g okay. So this is the most familiar thing

that you are that you have seen.

So, nothing but the convective derivative of the velocity is equal to the weight or the gravity

term the Laplace of the pressure and the corresponding shear stress term if mu k is constant

okay, then this act this come actually becomes okay, so, sorry this is not a Laplace ,this is the

corresponding Laplace of the velocity. That is the grad of the pressure field okay.

So, the pressure is a grad of the pressure field here it is the Laplace if mu k is constant. So,

mu k you can actually take it out, got it. So, this is very simple, this is the corresponding

Navier-Stokes equation that you are familiar with, right, okay. Similarly let us take a look at

the energy equation  now. So, the energy equation  is  something like this  if  we apply  the

similar divergence theorem okay.

So, once again what terms we have? We have the corresponding conduction term the heat

generation term okay and the corresponding work that is done by the body forces and the

work that is done by the sheer or the total stress, right. This if you remove the mechanical

energy  term from this  energy  equation  that  means  you just  take  a  dot  product  with  the

momentum equation.

A velocity dot product to the momentum equation and subtract it  out because we are not

interested in the kinetic energy component that much, right. So, you can end up with this

particular expression okay where this looks exactly similar to this all the terms are still the

same okay, except that if you look at the right hand side, this is this is nothing but once again

the convection, it is always the conviction okay.

So, now the can or the convection, advection whatever you call it. So, that is the left hand

side of the expression. The right hand side term however if we look at each and every term

one is the heat transfer by conduction or diffusion mechanism. Once again this is the total

energy that is actually internal energy generation in many cases it can be actually equal to 0.

And then the reversible rate of internal energy increased by compression that is given by the

pressure term okay. So, if the divergence is equal to 0 this term will also be equal to 0 okay.



So, it is like the work that is done by the pressure essentially by compression okay. And the

last term is basically nothing but this particular term is nothing but something called viscous

dissipation.

In many cases this will be also equal to 0 but viscous dissipation is an important quantity that

you may have may not have encountered, so far. It is basically, so, take an example like this

and this is an experiment that you should not do okay, well it is just a thought experiment

okay. Say if you have your fingers, if you can just look at my fingers.

So let us take our like an air hose okay. So, and let us put that airflow through these two

fingers okay like this okay you would not feel anything on your fingers,  right. Here you

might feel a little bit of a tingling and along the edges but nothing bad happens okay. If the

fingers are far apart and if the pipe diameter is small enough you do not feel many things

okay.

But if I make the finger sufficiently close like this okay and I take a hose pipe and I try to

purge the flow through that gap between these two fingers okay. You will feel the burn, you

immediately or your region over here is going to be burnt okay. Why is that burn? That is that

is happening because of this viscous dissipation. So, why viscous dissipation is important? 

This is basically the work done by the shear stress, correct. So, the work done by the shear

stress is a lot higher okay, when these two fingers which basically represent say if you think

in  the analogy of  two parallel  plates.  These two fingers  are  like  two parallel  plates.  So,

naturally the heat that is generated when the flow goes through this finger, these two fingers

of mine it actually generates a lot of heat.

But when I spread the fingers out okay, the shear stress is very low okay. So, the viscous

dissipation is  important  especially  if  we have a very high velocity  flow going through a

constrained space okay. So, it is a function of the shear stress and the shear stress what it is a

function we just saw in this particular thing. It is just basically the derivative, right, of the

velocity, right.

So, how do we write it? If you something like this, correct, okay. So, if you look at it; look

like a typical component.  So, this is basically the change of velocity with some distance,

right. So, if this distance is very small and the change of velocity is high you can generate a

lot of shear. If you generate a lot of shear your viscous dissipation can be a lot higher as well,

right.



So,  the  work  done by viscous dissipation  can  be  high so  this  can  become a  formidable

component  as  the  example  that  I  showed you with  my finger  but  do  not  try  to  do  this

experiment. You will actually burn your finger okay. 
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So, that essentially then the entire equation boils down to this particular form. This is the

differential form all the terms we have explained earlier, viscous dissipation if you can write

it in a Cartesian coordinate system, right; cylindrical it will be a little different. You can see, it

is basically, these are basically, this is the normal stress, this is the shear stress, this was the

shear stress in x, y, z plane.

You all know the these are the basically sheer, right, okay. And these are the basically the

normal stress components right, okay. So, this is the total expression that you have. Now if

you look at this particular expression tau, say for example let us take tau xy. Now tau xy is

what at per Newton's law something like this right, okay.

The constitutive relationship that you all know, right, so, now when it is this is basically uk

because that is how we are writing it. If you look at this term and this term okay. This is one

of the viscous dissipation components, right. So, what this will give you is basically it will

give you uk dy square, right. So, that means it does not depend on what is your gradient it can

be a positive gradient, negative gradient whatever it is.

Like velocity can go up or down whatever it is. That it is the square of that particular quantity

is always positive, right. So, the viscous dissipation term throughout this expression is always

a positive number okay. So, that is what happens because of the square nature of this and this

you can show it for the other terms of these always a square okay.



In terms of; now this is the expression that has been written in terms of the internal energy of

the system, right. So, the internal energy of the system is ek. In terms of enthalpy and why we

are writing in the in terms of enthalpy there is a logic that you will find soon. In terms of

enthalpy if we write enthalpy is nothing but this ek + p by Rho k is the definition of enthalpy. 

You put that same definition over here you basically have the same material derivative of

enthalpy okay. In addition you have a material derivative of pressure rest of the terms do not

seem to be get affected.  Now for a multi-component system if  we do a multi-component

system like the one that we did in the last lecture.  

You can cast the same enthalpy in terms of the mass fractions and the individual specific

enthalpies of each of the components. So, it is basically like a sum total, so, if the total mass

is something like 1 omega ki is basically the mass of the ith component in the kth phase okay

divided by the total mass okay. So, this is the mass fraction okay.

So, mass fraction a multiplied by the specific enthalpy of that particular component, right. So,

it will be just summation okay. The left hand side will be just the summation of the each

individual enthalpy components or each individual component okay, the sum total of across

all the components over there, right.

 So, for that this qk double prime that you see over here which we say is a conduction term. It

is basically a little bit more complicated than that. If you look at this expression over here the

first term you recognize immediately that is like the Fourier’s law, right. That is a Fourier’s

law of heat conduction, correct.

But you do not know much about the second and the third term, right. The second and the

third term is basically the heat transfer due to inter diffusional convection that the first term

over there and also the heat transferred that due to the concentration effect okay, as you know

that concentration can be transferred by temperature gradient. 

Similarly heat can also be transferred by concentration gradient but these are strictly, these

two  components  are  very  strictly  second  order  effects.  And  most  of  the  cases  they  are

negligible, right, okay. But however many of the equipment that we use actually work on the

second order effect, right.

One example of that is basically your thermoelectric okay thermoelectric that is a second

order effect essentially you also have like thermoelectric like healthier cooling and things like



that these are all second-order effects that also thermocouple one of the most important things

that you use that is also a second order effect, right. 

So, you have actually second order effects in situations where there may be very important

but most of the time they are very negligible we are only concerned  with that first one that is

heat transferred due to the temperature gradient not due to concentration gradient or any other

thing okay.
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Now if the kth phase is  isotropic what do you mean by isotropic means that  there is  no

variation in thermal conductivity in any direction. So, there is no thermal conductivity is not

like kx, ky, kz right, they are all the same as k, right. But there can be materials which can

have directionality like for example if you take a rod. 

We take a material which is composed of these rods like say nano rods or something like that

okay. What will  happen is that the conductivity  along this  direction and the conductivity

along that direction is different okay. So, but in cases where the conductivity is the same all

the direction okay, you can replace them by a single conductivity parameter, right, okay.

When these are once again the second-order components that we talked about and these are

the terms that we already spend viscous dissipation and the corresponding pressure. This is

written in terms of enthalpy. Now if we get a pure substance pure substance means i = 1,

right. There is no multi-component system over here.

So, the expression reduces to something like this and we are neglecting this also okay, which

we can safely do because these are all second-order effects as we talked about. So, this is



basically the; once again the same three terms that you are familiar with. Now we can do a

little bit of jugglery, right.

Because this is not a very usable form okay that is not the one that you normally encounter

with. So, what we do is that this material derivative of the enthalpy of the kth phase okay, we

write it as the differential of hk with respect to T at constant pressure into the corresponding

material derivative of the temperature of the kth phase, right.

Similarly, we do the same thing with respect to pressure at constant temperature and we cast

this Pk in terms of Dt, right. So, what we have essentially taken is that it is a function of P

and T, hk, right, which is a standard thermodynamic definition right. That your property can

be a function of you can specify the property in terms of two other properties, right, okay.

 Now the thermodynamic relationship;  this  particular  relationship  is  important  that  is  the

change of the enthalpy of the kth phase with respect to temperature for a constant pressure is

nothing but CP the specific heat at constant pressure, right, okay. Similarly the change in

enthalpy at, with pressure at a constant temperature is given by this expression where this

beta k is nothing but the coefficient of thermal expansion.

Which is nothing but the change in density of the kth phase with respect to temperature at

constant pressure okay, so, that is beta that is the coefficient of thermal expansion, correct, so

we  can  right  now  the  change  the  material  derivative  of  the  enthalpy  in  terms  of  two

components the cpk which is the specific heat at constant pressure for a particular phase.

And we can write it in terms of the pressure and the corresponding coefficient of thermal

expansion, right, okay. So, not a problem, so, this entire equation therefore now becomes a

much more good-looking form I should say, okay. So, it is given in terms of temperature.

Temperature is something that you can measure easily.

So, this gives a little bit of latitude to us okay. This pressure term and this pressure term can

be combined together, right. Because that one basically drops off okay that 1 - beta k. So, you

just get this nice looking expression and the rest of the terms remain the same. Now for an

ideal gas if this is an ideal gas okay you can see that this particular expression now reduces to

something like this from here to here. 
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Now for incompressible flow with constant density okay, we know that the pressure term will

actually vanish that DPk by Dt that will vanish, right. So, you get this particular form, so, you

are reducing it slowly, right. The viscous dissipation term, now if you write it in Cartesian

coordinate you can see what I talked to you earlier it is always the square, square, square

right.

So, it is always positive always the square, right. Now for incompressible flow okay, the

species conservation; so, this is the expression that you normally would get. Now this k can

be taken out also if it is like a constant thermal conductivity. So, this expression can become,

is  the  material  derivative  of  T can be written  as  kk Tk + qk triple  prime + the  viscous

dissipation, got it, okay.

So, now this is basically nothing but a Laplace temperature Tk, correct. This is the convective

derivative once again heat generation term in many cases it can be equal to 0 and then the

viscous dissipation  term in many cases  can also be equal to 0,  right,  okay. So, similarly

species conservation that we did in the last lecture okay in the integral  form can also be

reduced to something like this.

We are not going through the details of the math once again, it is exactly looks the same as

the  energy  conservation  equation.  If  in  the  energy  conservation  equation  this  and  this

becomes equal to 0 okay. So, this is nothing but the same as this expression that we have.

Here of course we have internal mass regeneration rate if that can be also equal to 0 then you

just have the species balance in it form like this.

Exactly looks the same as a mass conservation as a energy equation. So, there is still the

material derivative of the mass fraction there it is temperature here it is mass fraction another



scalar and this is basically nothing but the corresponding diffusive flux okay which looks

very similar if you consider the next expression for a binary system.

So that if the system composes of A and B that is two components one diffuses through the

other. You can see that this is like Rho k D omega kA, this  is I am writing it  for the A

component that is the convective term. This particular term looks exactly the same like your

diffusion term in the it looks exactly like this.

If you look at the similarity you can see it, it looks exactly the same as this right okay, looks

exactly,  exactly  the  same okay. So,  this  looks  very  similar  this  is  also  a  diffusion  term

therefore and this is the corresponding generation term in many cases it can be equal to 0.

This DA D can also be a constant, so in that case this will come out and you will once again

get a Laplace of Omega kA, right.

So this Laplace of omega kA is very similar to this particular Laplace of the temperature,

okay. So, this is what we have for compressible; incompressible flow for constant density

right. So, we have done all the differential formulations over here okay. So, to say;
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Now we are going to move on to what we call the jump conditions okay. Why are the jump

conditions important now the phase equations that we introduced above, okay, it can be only

applied within each phase and up to the interface, right. So, it is sum total of each of the

phases right that we did. We just summed over all the phases.

However they are not valid across the interface where sharp changes in various properties

happens like we said when water, liquid water gets converted to water vapour there is a



density  change  of  approximately  thousand.  So,  appropriate  boundary  conditions  at  the

interface must be specified to solve the governing equations, right, okay.

So, the interface conditions will serve as boundary conditions for the transport equations in

the adjacent phases got it. We have to specify when you do the equations these comes as like

two phases, this comes as an interface serves as a boundary condition. The jump conditions of

the interface can be also obtained by applying the basic laws of thermodynamics momentum,

energy.

That energy is basically thermodynamics conservation of mass, momentum. And the second

law of thermodynamics at the interface okay. So, let us look at the situation for a conservation

of mass over here okay. So, the integral formulation for conservation of mass for a control

volume that includes two phases okay is already we have covered that. 

Now what we are doing is that we are adding the interface term and we are subtracting the

interface term okay. So up to this part it was already there right if you just take this out, this

and this was already there, right. Except now that we have added the interface, right and we

have subtracted the corresponding interface over here getting my point okay. 

So, what we have done this is summed across all the phases okay. So, what we have done is

that for each phase we have added the interface and we are taken the interface out. This is for

two phases, got it. We have added and subtracted the two phases. The AI is basically the

interfacial area, right, whatever it may be right. 

So, we have added the interfacial area here we have subtracted the interfacial area there that

is what we have done. There is nothing illegal it just have added and subtracted the same

term, right.
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Now let us look at this particular expression this particular cartoon that we have over here.

This is one phase, this is the other phase this is very simple this is looks like an egg okay. It is

actually separated by this interface area which is AI right. So, it is like a membrane which

basically is separating the two halves okay. 

So,  if  you have seen the toys okay like you will  have that  you know a separation clear

separation between the two components okay. So, it can be other, so it can be anything. So,

this is phase one, this is phase two. So, this is the area this particular area is A2 that particular

area is AI right. So, VI P1 is bounded by AI and A1 correct.

V1, if you look at V1 what does it if you consider the whole V1 volume it is surrounded by A

1 it is also surrounded by this AI right. If you consider the area that actually encloses V1 you

will  find  that  it  is  AI  and  A1.  Similar  for  V2  it  is  basically  A2  and  sorry  A2  and

correspondingly AI right, okay.

So, using divergence theorem and Lebnitz’s rule like what we did last time okay. We convert

the corresponding as we know the area integral to the corresponding volume integral. So, this

part  is  what has been converted to volume,  this  part  is  the interface.  So,  this  part  is  the

interfaces part right, not the 0 up to this part, the interface part, right.

Now we already know that this part has to be equal to 0 the kth phase is not that so. You

already know that this has to be equal to 0, right. This is summed over Vk nice and easy right.

So, we know that this part has to be equal to 0 are we okay with that because this is nothing

but the conservation of mass equation.



For each individual sub following we have written it okay. But however this implies that this

particular term which is nothing but this written across the interfacial area AI that must also

be equal to 0, right, that must be also equal to 0. Except that it is over AI okay. Now since the

integral is equal to 0 the integrand should be also equal to 0 because of the, because this area

can be very small okay.

So, what we have over here is that it is sum total because it is summed over both the phases

right. So, it is a sum total of phase 1 and phase 2 right; what it is it is Rho 1 into V1 relative

that is the velocity with respect to phase 1 okay and the velocity with respect to phase 2, right

and the corresponding surface normal in both the phases right.

 Remember this here of course the perfect normals are equal and opposite because the phase

is a nice flat interface but it can be anything. It can be the same thing where the interface is

something like that right. So, this can be the interface also does not really matter okay. But

whatever it is this is given by that particular expression right now.

If the V reference velocity equals to the interface velocity that is a reference velocity with

which it moves the control volume okay if that is equal to the reference velocity okay. So, the

relative velocity therefore can be written as V1 relative is basically written as V1 - VI okay.

VI, so, this is 1 this is I there is a difference okay and similarly this is V2 - VI right. It is the

same thing okay.

Now if you consider this particular term what does this designate this designate some kind of

a mass flux right. Is Vk - VI in dot nk into Rho k it definitely designates a kind of a mass flux

right.  So,  it  essentially  means the sum total  of the two mass fluxes considering both the

phases has to be equal to 0 okay.

So, m1 double prime, the m2 double prime has to be equal to 0. Now the thickness of the

interface here has been considered to be zero. So, it is like a membrane that is what we say it.

And if you can take a look at this, this is a typical interface this is like n1, this is n2 okay this

is interface, this is the region 2, this is region 1, this is the tangential direction. 

So, n1 is basically the negative; one surface normal is the negative of the other okay. So,

naturally you can rewrite this equation. This equation can be written in this particular form. If

there is no phase change that means that m1 and m2 are basically equal to 0 then you have

the velocity V1 is the same as V2 that is the same as VI right.



So, m1 and m2 now you can clearly see the link in one m1 dot double prime and m2 dot

double prime is basically the transfer of mass okay between the two phases. That means there

is a phase change that is going on so there may be liquid water here vapour here. Some liquid

water is  getting converted to vapour or some vapour is getting converted to liquid water

whatever may be the case.

So, the interface is a thin interface, the surface normal’s are basically equal and opposite to

each other okay. And this is the expression that we can write if there is no phase change that

means  this  and this  basically  becomes  equal  or  negative  of  each  other. And  we get  the

velocities to be the same as the interfacial velocity okay.

So, the velocity in the two components is the same as the interfacial velocity, got it. However

if  these  are  not  the  same then of  course you have  a  net  transfer  of  mass  then  also  this

expression will be valid, got it, okay. So, this is one of the key things that we can find out in

this particular exercise okay.

Now we look at the momentum equation in the next one but you can clearly see that by

defining an interface okay what are the conditions across the interface. So, if there is a mass

exchange what  will  be the condition if  there is  no mass exchange then what will  be the

condition and it is easy what we have done is that we have basically added and subtracted in

our integral formulation that AI.

That is basically nothing but the interfacial area we have added it to each of the phases okay

and we have taken it out also right. And then just by using the continuity expression we have

set this part to be equal to 0 and then we have worked with this particular part of the right.

And that part is also equal to 0 because of the reasons the entire sum is equal to 0 and then we

have cast it.

There are two phases we have cast it in this kind of a component and we have taken the V

reference velocity to be equal to the interfacial velocity in this particular case. So, you stop

the  lecture  over  here  okay  in  the  next  lecture  we  will  pick  up  the  momentum  the

corresponding momentum equation and we will see what that implies okay, thank you.


