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So, in the last class, what we did was, in the last lecture that we try to work out the integral

formulations of the mass and the momentum equation okay. So, the point that we stopped

was that we defined that how the continuity equation or the mass conservation equation can

be written. And we also propose the momentum equation in its integral version.
(Refer Slide Time: 00:42)

Now remember in those equations okay we define that there is a body force term okay which

is strictly given by X ki this is a continuation of last lecture. Now the body force term in most

of the cases it is gravity okay. So, if it is gravity the body force term is reduced to a form like

this okay. So, the stress tensor, so, this is the body force term okay. 

Now the other forces that are acting on the control volume on the fluid control volume okay

includes both the normal as well as the shear stresses, right. So, shear stresses you know what

shear stresses are, okay. So, from your undergraduate fluid mechanics knowledge, so it is the

total force is basically nothing but the sum total of the body force and the total stress.

So, tau k this particular thing is nothing but the total stress tensor and nk is basically the local

normal unit vector, okay. So, the total momentum equation therefore can be written in this

particular  form,  okay.  So,  what  can  we  say  this  particular  term  is  a  rate  of  change  of



momentum  within  the  control  volume,  this  is  the  momentum  flux  basically  these  two

constitutes the convective derivative portion.

This is nothing but the body force term and this is the total stress term, okay. So, this is

nothing but  Newton's  second law okay, law of motion,  got it.  Now if  we,  if  the  control

volume includes multiple phases. If you recall that particular diagram where we had say three

phases,  okay. So, this  is  like your control volume,  three phases.  So,  this  is  liquid this  is

vapour, this is solid these are basically the areas.

This can be actually 3d and this is the volume okay. Now if it contains multiple phases then

you need to perform this integral form for each of those sub volume right. So, sub volume

indeed this is one sub volume, this is another sub volume that is another sub column, right.

So, if the phases are very well separated and things like that you can actually have these two

as your sub volumes, okay, got it.

So, that is an interesting assumption over here that the control volume is occupied by several

phases. In this case it is solid liquid and vapour, okay. So, when it is solid you have the solid

part which is the solid part of the control volume. So, when you actually perform integration

over multiple phases this is the final form of the equation that you get. 

If you look at this form there are a couple of things the area Ak is basically the individual

areas,  the individual  control surface for example if I look at  this particular  diagram once

again you will find, if I take this out this is for example the area of the solid, okay. If I take

that out, this particular area out, this is like the area of say the vapour right.

So, this is that area that we are talking about okay. Similarly these volumes are the individual

sub volume the rest of the equation remains exactly the same, right. The rest of the equation

is  nothing  but  this,  but  it  has  been  summed  over  all  the  phases,  okay.  So,  that  is  the

momentum equation that we did last class there we have reemphasized and said that what the

momentum equation should look like.
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Now let us take a look at the energy equation, okay. The energy equation is basically nothing

but the first law of thermodynamics for a fixed mass system right, okay. So, what is the first

law of thermodynamics, we did it in the first lecture it is nothing but the rate of change of

energy of the system.

This energy includes the internal energy, kinetic energy, potential energy any surface tension

or other such energy that can be there okay. Most of the time we are concerned with internal

energy but it is nothing but the heat and the work transfer right, these are the other two terms.

This is a typical first law right. 

For a control volume that contains only one phase because that is the methodology that we

are following we are defining it for one phase and then we are showing that what kind of, if

we take it across multiple phases, what will happen? So, now the property function that we

define in the last class is nothing but the energy plus this kinetic energy hit okay.

And the corresponding small Phi k is nothing but the intensive version of the same. Now if

we  substitute  the  value  of  Phi  k  in  the  governing  equation  right,  the  equation  that  we

established. We see that the rate of change of energy within the system it looks very familiar

to like a conservation equation.

It basically tells you the rate of change of energy within the control volume and whatever is

the flux that is happening okay, across the control surfaces. So, these are basically the internal

energy and the specific internal energy capital Ek and small ek right. So, substituting this

over here where we are substituting where we are bringing in the qk and the wk term.



The same expression is kind of valid right, okay. So, here we are proposing something which

is a little bit interesting that this particular term which is nothing but the heat transfer across

the control surface right. That we are proposing that can happen due to two ways okay. One is

basically due to the internal energy generation inside the control volume right.

The other one is basically the flux that is coming due conduction right okay. So, this qk

double prime into nk dA is nothing but a conductor. It is like a heat flux vector at the control

surface, control volume surface right. And qk triple prime is nothing but the internal heat

generation right, in the case of work term, now if we look at the work term over here now.

This work term is nothing but the work done by the normal and the shear stress and by the

body force right. So, we already saw in the momentum equation that there was shear stress

and then there was body force and then there was normal stress. So, this is the nothing but the

work done by all those forces.

So,  naturally  by  the  total  stress  or  work  done by the  total  stress  is  given  by this  okay.

Similarly the work done by the body force is given by this okay. So, these are the two work

related term body force and by the normal stress okay and by the shear stress on the control

volume. 
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So, for a single phase there for assembling all these parts of the equation we get this final

form okay. Now in this final form if you take a closer look you will find that once again the

first two terms are basically your advective advection term or convective term okay. The first

term on the right hand side designates your diffusion term or the conduction term right.



This is the internal energy generation term, this is basically the work done, these two are

basically the work done component okay. By sheer normal stress and body force right, okay.

For multiphase what we do we follow the same exercise, that we sum all these components

right, across all the phases over here.

But with a special  attention that this Vk is nothing but the individual sub volumes Vk is

basically  the  sub volume of  each  phase.  Similarly  Ak is  the  surface  area  of  each phase

occupied by each phase okay. And basically we have summed over all the phases. So, that is

the expression that you see.

So,  the  energy  equation  basically  as  we  you  already  knew  from  your  undergraduate  is

basically consists of the advection term, the conduction term, the heat generation term, the

work that is done due to the shear stress and the normal stress and the work that is done by

the body force okay. So, that is basically nothing but your energy equation right.

And this energy is basically the component sum together of the kinetic energy component and

the internal energy component. And you can, here we have call of course neglected potential

plus any surface tension related component, those we have neglected.
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Moving on, so, we have done basically the conservation of energy, conservation of mass,

conservation of momentum. Now let  us look at  the second law of thermodynamics  right,

applied to a system with fixed mass and containing one phase only because that is how we

start. Here of course the variable, the property is basically nothing but the kinetic energy of

the kth phase, right.



So, this is the extensive quantity, this is the intensive quantity okay. So, how do we write it,

once again the same expression is valid right. The rate of change of entropy in the system is

given by the trait of entropy within the control volume plus whatever is the entropy that is

coming out, right, through the control surfaces right, okay.

So, that changes of entropy in a closed system results from heat transfer and or odd entropy

generation correct. So, the entropy change in the system happening due to heat transfer is

given by this expression. The entropy change due to the heat generation is given by that

expression and then there is of course the entropy generation term okay. Itself!

So, what is this particular term this is essentially the heat transfer across the control volume

or control surface okay. This is basically nothing but the entropy generation due to volumetric

heat. And this is the normal entropy generation term which has to be greater than 0 basically.

This is dot triple gen okay. 

Now for a single phase therefore if we put all these parameters together you will once again

have that there is a convective term okay, there is a entropy that is generated or the entropy

that change that happens due to the heat transfer across the control surface entropy that is

generated due to volumetric heat generation.

And this expresses the extent of the irreversibility right. So, there is an entropy generation in

the control volume, so, this entire thing is greater than zero that is because the generation

term is actually greater than zero, right. You do it for multiple phases it is the exact same

expression that we have, okay.

Once again only thing that is taken care of is Ak and Vk, Ak and Vk these are the only two

things that you need to take care right. So, whenever you do you are doing it for the particular

sub  volume  and  the  sub  control  surfaces  essentially  right.  And  you  are  summing  them

together and you are coming the entropy that is generated in each of the phases okay. 

And then you show that this has to be great an equal to 0, right. So, this is basically the

second law of thermodynamics when you cast it in a control volume approach okay. I think it

should be pretty  clear, right.  There  is  always a  rate  of  change of  that  particular  variable

inside; of that property inside the control volume and then there is a flux term.

These are the two universal thing okay. Now in addition to that we are stating that this should

be  related  the  entropy  change  is  also  related  to  the  change  of  due  to  heat  transfer  heat



generation and the normal generation because of the irreversibility of the process. This is due

to irreversibility okay. So, that is what this particular term is.
(Refer Slide Time: 13:47)

Now we look at  the  final  thing which is  nothing but the species  balance  equation  okay.

Species balance, why the species balance is important because species balance equation as I

said, if it is a single component system it does not really matter okay. But if it is a system

which is a reacting system like for example a combusting system or any other similar type of

system, species actually do play a major role, right, okay.

So, if the system contains one phase and more than one component that for how we start,

single-phase multi component system, the total mass of the system is composed of multiple

species, correct. Because it may be add nitrogen CO2 there may be thousands of species that

may be present. There is no limitation as to the total number of species that that can be there

okay.

So, here the Phi k, now that we define is basically nothing but the mass of the ith species in

the kth phase okay. So, this mask m ki is basically the mass of the ith species in the kth phase.

So,  say for example  is  water  that  means it  is  the mass of  water  in  whatever  phase it  is

presenting in. Then there can be air. So, it can be mass of air in whatever phase it is presented

okay.

So, similar thing when you and actually a small  Phi k is nothing but the variation in the

density. This is the density of the ith component in the kth phase okay. And this is the total

density or the average density okay. So, now when we write the change of mass of the ith

component in the kth phase in that particular system.



Once again it is composed of two components, right. So, one is the rate of change of that

particular component within the control volume the other one is a flux term, right. Remember

here the velocity is V ki relative that means this is the velocity of the ith species in a kth

phase. This is a relative velocity basically of the ith species in the kth phase, okay. 

And this Rho ki is nothing but the density of the ith species in the kth phase, okay. So, if there

is no chemical reaction for example, okay. The total mass of the ith species remains constant,

right. So, it is exactly like a continuity equation right because if there is no reaction say for

example in a vessel okay, you have water vapour, air, co2, nitrogen everything you have put

together like this room for example okay.

This is a multi component system room but here you do not have any chemical reaction right.

So, if you do not have any chemical reaction the total mass of the ith species remains constant

right. So, species wise okay it is almost like a mass conservation. Chemical reactions on the

other hand if it happens it lead to the production and consumption of ith species, right.

Say for example if you have a reaction C and C plus O2 and form CO2, right. What happens

is that there were two components C and O O2, they are consumed and you create CO2 in its

place right. The total mass is still conserved right, the total mass is still conserved that we

already know. But individually the species mass are not conserved okay. 

So, the C and the O2 if this is a vessel which initially had C plus O2 okay after some time

you will get the same vessel where there will be lot of CO2 and very little C and O2. It will

be still there but it will be very quantities, right. So, if you started with one gram of C and one

gram of O2 you might end up getting a .1 gram of C and .1 gram O2 or something like that

okay.

Because the rest has been converted to CO2 the mass is still conserved okay but the mass of

the individual species are not. So, it leads to production and consumption of the ith species

which needs to be cast as a mass source or sink term okay. Like for example take a look at

this particular equation over here right.

So, this is the rate of change of mass okay of the ith species in the kth state in the system and

that can only be given by some kind of a sink or source term. This m triple prime ki dV is

nothing but a sink or a source. It can be a depletion it can be a production also right. So, for a

single species it looks very familiar to a mass conservation equation except that in the mass

conservation equation this term basically goes to zero.



But here in this  case obviously you are not going to have that okay taking into account

chemical  reaction;  you produce mass within the control  volume,  rate  of mass production

within  the  control  volume  okay.  But  note  one  other  thing  the  rate  of  production  or

consumption of mass of the ith species and I mean all the species combined has to be equal to

zero because globally the mass has to be conserved, right.

So, say for example here see the concentration of C and the mass of C and the mass of O2

may be coming down. But the mass of CO2 actually increases correct, mass of CO2 increases

the mass of C and O2 actually drops, okay. So, here what we can see is that the rate of

production or consume; the total rate of production or consumption of mass is basically zero,

okay.

And one other thing is that the density, the total density is nothing but the sum total of all the

density of all the individual components or the individual species right.  So, for all  the N

species you just need to come together this expression with correspondingly over N. N is the

total number of species not the number of phases though.

And this Vk relatives which is the relative velocity or the bulk relative velocity of a multi-

component system is nothing but the density waited okay. It is that density waited is it Rho k

into Vk right. So, it is the density we waited summation of all the individual species of the

system right.

So, that is why that Vk can be written as 1 over Rho k, okay, summation of i =1 to N Rho ki

into Vki relative, right. So, that you can say from this particular expression right, so, it is

nothing but the density average velocity of each of the component. So, that is the species

balance in a nutshell right.
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Now if you look at this particular expression over here it is not complete yet. Say the second

term on the left-hand side okay, this represents the species i mass flow across the surface of

the control volume which resolves which can result from convection of the bulk flow as well

as diffusion with respect to the bulk conviction.

So, one can be due to bulk convection right okay across the control surface. So, species i

move across the control surface that may be due to the velocity that it carries by itself, right.

It could be also because of the diffusion on the top of that bulk convection is not that so. So,

if you write these expressions you will find that there is a component which is Vk relatives

that is the relative component with the movable relative velocity.

That is the kth velocity okay, so, that is like the bulk, this is the bulk right. And there is

another component which is given by that J, J is basically the diffusive mass flux vector of

species i in the kth phase okay. To understand this basically what we have done is that we

have said that the species is getting transported across the control surface, right. Good thing;

Now  this  transport  of  species  across  the  control  surface  may  be  happening  due  to  the

convection of the bulk flow. Bulk flow is Vk a relative, so, this bulk flow carries with it okay,

a certain amount of species. So, this is a control volume there is a bulk flow that is going out

which is given by Vk relative, right.

So, as it is flowing out it is carrying the ith species with it, right. But on the top of that if there

are concentration gradients across the flow feet, right. It can happen right, so, from here say

for  example  the concentration  of  species  i  is  higher  than here,  right.  So,  there will  be a

diffusive transport okay.



It is like a conduction problem that means when there is a temperature gradient there is a heat

flow here when there is a concentration gradient there is a corresponding species flow. That is

not the bulk flow that we are talking about over here okay. So, that is given by this J okay. So,

the diffusive mass plus vector, so, now what we have is  basically, we have a convective

derivative fully.

We have a diffusion term and we have a corresponding production term. This is diffusion this

exactly looks like a heat balance equation, this is the basically the convection. Convection,

advection whatever you call it and this is basically production or sink kind of vector. Now for

multiphase systems what we do is basically we for each species, this is for each species, right.

So, each species may be present in 2, 3 in at least two phases. So, there if sum total it over

each of the individual phases right, once again Ak the Vk comes into the picture, right. So,

this is nothing it all remains the same except that okay, we are having a transport of the each

species as per this particular equation, right. 

So in a multi-component system that is what happened this is the term that it is only reserved

for reaction basically got it. So, I think in this particular slide what we have explained over

there is that you not only have a convection but you also have a diffusion of species because

you can have a concentration gradient. 

Because  there  are  many species  that  are  present  in  the  system and you also can have a

production or a destruction kind of a term of the species okay. And you have the similar this

looks exactly the same like a mass balance equation like a continuity equation only this term

is new and this term is new. But this term looks familiar to a heat conduction equation it

looks very familiar to a heat conduction equation, right.

Look very, very familiar to a heat conduction term right that you have in the energy equation,

right. At the same time okay, so, this heat conduction equation is like it is very similar to heat

conduction except that instead of temperature gradient you have a species balance gradient

over here, okay. So, this completes the species balance part of the thing.
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Now in most of the time we basically a deal with instead of integral formulation, we deal

with differential formulations, right, because differential formulations are sometimes easier to

handle. Now all of these can be derived from the integral formulation as well. Now for the

differential formulation it is necessary first to apply the divergence theorem.

What is the divergence theorem? This is basically any property that you can think of okay.

So, that property okay, which is enclosed by a control volume a control for; this is a control

volume V which is basically enclosed by a piecewise smooth control surface. So, basically

what  we can  do is  that  this  area  integral  can  be converted  to  the corresponding volume

integral, right. 

So, this is nothing but the flux of whatever is the quantity that you are dealing with right, with

respect to the surface normal okay, of the enclosed area. Now if it is piecewise smooth okay,

then this is related to the divergence of the same component okay, in the on the on a volume

basis, right. And furthermore since the control volume shape and size are fixed in space we

can apply let this rule okay for any specific general quantity.

And we can say that this is the formulation this, let me through you have seen in the case of

your boundary layer analysis also right. So, it says that if it is control volume is fixed shape

and size are fixed in time right we can cast the rate of change of whatever is the property over

here and we can take this basically within this integral sign okay.

So, the conservation of mass basically what does it become initially this was the, this is, these

are the two reduction terms like for example the flux term in the case of conservation of mass

that  is  the  flux  term  across  the  control  surface  is  now  converted  to  the  corresponding

divergence, right. 



The divergence of this particular quantity right and what will happens is that if we apply now,

okay, this  transformation  everything  now is  on  a  volume  basis,  right.  The  integral  now

becomes only with respect to volume there is no area if you just quickly take a look what we

did earlier. 

You will find that here for example take a look at this particular expression right here we see

that there is an area basis right. And this is the one that is run the volume basis. Now what we

have done in this particular case is basically we have converted that area integral to a volume

integral, correct, using the divergence theorem, right.

And we have taken now and then using Leibniz’s rule, we convert the continuity equation to

this particular form, correct, okay. So, for now if you see this integral is basically equal to 0.

Now since it is valid for any arbitrary shape and size that means you can shrink the control

volume okay with impunity to as small a size as you want, right.

Then the integrand must be also equal to 0, right that is the integrand must be also equal to 0

because it is valid for any control volume right no matter how small or how large it is, right.

So, integrand equal to 0 means this particular term becomes equal to 0, right. So, this is the

standard continuity  equation  that  you may have seen in  your  undergraduate  or  first-level

graduate courses, okay.

So, this can be basically  written by a material  derivative okay, D Rho k by Dt plus this

divergence component right. So, this is basically by the divergence of velocity that we have

right. So, it is basically this D by DT is basically nothing but the material derivative as I said

just now. It is composed of the time derivative as Vk relatives into the corresponding operator

right.

So, these acts on the density right now if it is an incompressible flow say for example that

things the density does not change.
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We only get the divergence of velocity to be equal to 0, right. So, that is not that is why in

many of the problems that you solve you find that the divergence of velocity is always equal

to  0  for  incompressible  flow.  However  for  steady-state  compressible  flow  is  not  the

divergence of velocity but the divergence of this that is actually equal to 0, right, okay.

So, this shows that how easily we can convert an integral formulation to a corresponding

differential  formulation just  by using the divergence theorem and the Lebniz’s rule okay,

nothing else, okay. So, in the next class what we are going to do is that we are going to take a

look now at the momentum equation okay. 

So,  we will  stop here and we start  in  the start  in  the next  lecture  when we look at  the

differential formulation of the momentum equation.


