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Lecture 39
Boiling-II (Bubble dynamics)

We have started doing analysis on Boiling. So, last time we saw that how nucleation actually

occurs. 
(Refer Slide Time: 00:30)

Now, let us now look at the Bubble dynamics. Now, in the case of a Bubble dynamics, what

happens is that there are two types of Bubble dynamics that you can see, when the bubble

grows, when the bubble grows in quiescent, superheated liquid, it is basically homogeneous,

if you recall what is homogenous and what is heterogeneous.

So,  this  is  one  type  and  when  the  bubble  grows  on  a  heated  wall,  okay.  So,  this  is

heterogeneous, okay. So, first we are going to look at what is basically homogeneous bubble

growth. Now, if you recall the equation of continuity, what you will find? So, we are going to

study this first, okay. 

So, u already know what is a radial velocity in the liquid phase, if you recall, the continuity

equation that we did last time for a bubble inside a question fluid medium. And we also know

that Rho v is much, much less than Rho l, okay. So, at the liquid vapour interface, this u knew

at R ,t becomes equal to dR by dt. 
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Now, integrate the continuity equation that we had, equal to zero. Now, once you integrate it,

okay. You r, t, so, u r , t will be equal to the growth rate. So, u r,t will be equal to dR dt

square,  r  is  any  arbitrary  location,  location  in  liquid  phase,  okay.  Now, the  momentum

equation for the surrounding liquid right, that is the momentum equation. 

Now, if you substitute this u r, where r is any arbitrary location, as we said, if you use this u r

now, in this particular situation, okay what we are going to get? Let us see over here. So, this

has been integrated as you know and at the surface the velocity is this, okay. So, it is very

easy to show that the velocity progressively changes in that particular fashion. 

Once you substitute this into this equation, now, what will happen is that, okay. That is the

total momentum equation that you will get, if you integrate this momentum equation, this,

okay from bubble surface to r = infinity that has been the far field, okay. Bubble surface is

basically small r = R, okay. You will get, got it, okay. 
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Now, so that is the equation that you get. Now, we already know, if you recall the previous

class.  We already  said  that  for  bubbles  with  non condensable  phases,  this  was  the  total

equation,  right  if  you recall  from the  last  class.  If  the condensable  phases  are  zero,  non

condensable phases are zero that goes away. So, what we can do is that we can readily apply

this relationship in the, in the other equation. 

So, therefore this becomes capital R d square R by dt square, okay. So, this equation is called

the Rayleigh equation, got it. So, this equation is called basically the Rayleigh equation, right

okay. So, you can see that this is the growth of a bubble inside a superheated liquid, okay.

And this is the general form of the equation that you get. But, however, there were some

interesting findings that people noted.

One of those findings were that during inertia controlled stage of bubble growth, so, these are

the initial stages, okay one can conclude that the surface tension which is given by 2 Sigma

by r okay is negligible, okay. And what you have is that your Pv - Pl infinity is given as Rho

v hlv T infinity - T sat. That is the expression. 

So, the initial condition over here is basically, R = 0 at T = 0 as the initial condition, okay. So,

these are the two expressions that we see that is, this is negligible and this is a function like

this, okay. So, now what we do is that we substitute, okay. This expression in this particular

system, right and we neglect the surface tension term. 
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So, using that what happens is that the instantaneous, when you substitute that and become

dR squared dT square + 3 by2. These 2 terms remains the same, okay. Now, if you substitute

the initial  condition,  now, that  capital  R = 0 at  t  = 0 + I.C,  initial  condition,  when you

substitute that, the instantaneous bubble radius or bubble radius becomes, okay. 

So, this actually tells you if you look at it carefully that this is a linear function of time, right.

Or, in other words, the early stage of the bubble growth, okay. It will predict you something

like this, okay, t versus R where the slope will be determined by all these quantities that, you

have in a bracket hmm. But it is basically a linear function of time. 

This is the early stage of bubble growth for homogeneous nucleation, okay. Now, during the

later stages what happens. 
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So, these are the early stages, during the later stages, we get slightly different situation, okay.



During the later stages or bubble growth so what do you have in the later stages of the bubble

growth the inertial  forces,  okay becomes insignificant,  okay. So, as  the pressure Pv -  Pl

actually goes down, okay the interface, this leads to interface, interface motion, okay slows

down. 

Therefore, heat transfer, okay becomes the process that limits, become the process that limit,

okay that limits bubble group, okay. So, it is like the not an inertial dominated framework

anymore. It is the heat transfer because everything is becoming a little bit slow now, okay. So,

now, if we have to write the energy equation for the heat transfer part, what will be the basic

equation? 

This will be this, right, u, got it? This u is the same radial velocity that we got earlier, right.

So, the initial conditions and boundary condition therefore becomes T at r , 0 is the same as T

infinity.  T at R ,t equal to the saturation pressure and this is the surface of the bubble and T at

infinity, T will be equal to Tl at infinity, got it okay. 

So, these are the initial and the corresponding boundary conditions that you have, okay. So,

what happens is that, at the liquid vapour interface, at the liquid vapour interface, you should

have this being a wet, right. So, this is rather because this is nothing but the mass. This is Rho

into v right, okay. And the area cancels from basically from both sides.

 So, basically Rho into v area cancels from both sides. So, it is basically Ka into, the into the

conduction flux is equal to whatever is the,  that heat is being used for the latent heat of

vaporization. That is the essential essence of this particular story, right okay. 
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So, based on these, okay the instantaneous bubble radius, radius, okay is shown to be, okay.

Alpha i into t that is the instantaneous bubble radius, okay. Now, we can define something

called a Jakob number or Yakob number whatever you call it, okay. So, that Jakob number is

given by Rho l CPl, Tl infinity right - T sat into Pv divided by Rho v into hlv, okay. 

There is a Yakob number. For large Jakob number, so, you can see what the Jakob number is.

It is basically the liquid minus a saturation temperature divided by whatever is the latent heat,

okay. So, it is, it is basically that. For large Jakob number, CR is basically 3 PI into Ja. For

small J, we have CR = Ja by 2, okay. 

So, therefore, there are two stages. In the first stage, Rt is proportional to t which is basically

what we call a linear growth regime, right. In the second stage, Rt is proportional to root over

t which is basically, this is inertia, okay. This is basically heat transfer controlled, okay. So,

you  will  have  basically  two  slopes:  One  slope  like  that,  okay;  the  other  slope  will  be

something like that, okay something which is less prominent, okay. 

So, this is basically the linear t1 this is t half, okay. So, this is R, the time, got it. So, there are

two zones: One is a linear, one is the heat transfer controlled. These two zones basically, two

zones  that  we  get  over  here.  So,  this  clearly  establishes  the  fact  that  the  based  on  two

mechanisms. One is the inertia and one is the heat transfer controlled. 

We can actually define and we can actually show that what is exactly happening to the whole

process got it. And this is for homogeneous nucleation only, got it, clear, up to this point,

okay. So, that is the bubble growth. So, these are all related to bubble growth, right. 
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Now, in the case of heterogeneous bubble growth, heterogeneous bubble growth, okay. So,

this  is  attached with a surface,  right.  Bubble  attached to  surface,  okay. Now, the vapour

bubbles  attached  to  a  heated  surface  basically,  the  growth  occurs  in  a  non  uniform

temperature field, okay to say the list, okay. 

So, what Hans and Griffith did, what they did was that the bubble can grow from a nucleation

site if that thermal layer adjacent to the nucleation site is thick. And they said that the bubble

normally grows like a hemispherical cap. So, the bubble is like a hemispherical cap. I will

show you the picture in just a second, okay. 

And the bubble can grow can grow from a nucleation site. That is, if you recall, it is like a

micro crack or a crevice, okay. If the thermal layer, if and only if the thermal layer adjacent to

the nucleation site is thick, okay. So, and we will show what that is. So, they found that Rc

which is the max and Rc max Rc min is basically given by delta by 3 which will show delta is

the thickness of the other thermals bound, thermal layer. 

So, that is delta. It is 1 + - 1 minus 12 Sigma T sat divided by Rho v hlv Tw - T sat raised to

the  power  of  half,  okay.  So,  this  is  for  saturation  conditions,  for  saturation  conditions.

Remember, we had saturated boiling and things like that. For saturation conditions, okay that

what will be the sizes that will be active, the maximum and minimum cavity sizes that will be

active, okay. 
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So, now, if we look at this particular presentation, we will get an idea of what we are talking

about. So, Howell and Seigel,  they did and if you look at figure number ten eight okay they

examined that  how the bubble from a single nucleation  site  of known diameter. So,  this



nucleation sites diameter varied anywhere between 0.1 to 1 mm, okay on a highly polished

surface. How do these bubbles actually grow? 

So, if you look at it now, there are two scenarios that are possible, okay. When the cavity size,

half of the cavity size essentially Rc is so large, that a part of this bubble actually sticks, okay

above the thermal boundary layer which is given here. That is the thermal boundary layer

thickness, got it.

So, a part of the bubble basically sticks out, okay. And in the second case, most of the bubbles

is actually encompassed within this thermal boundary layer, okay. What happens is that, what

they say that, if the bubble is extending out, that is case number one, if we consider this as

your case number one, then, evaporation happens in this layer and condensation happens in

that layer, right.

So, in the first case, you have evaporation in delta and condensation in Rc - delta, okay. So,

that  is  what  you are going to  have.  Now for a  bubble to  grow that  heat  transfer  due to

evaporation must be greater than the heat transfer due to condensation,  right. That has to

happen. So, part of the bubble is evaporating. Part of the bubble is basically condensing. 

So,  based on this  argument,  what  they showed was that  your  T wall  -  T saturation,  this

temperature has to be greater than 4 Sigma T sat divided by Rho v hlv into delta when Rc is

greater than Delta, got it for a bubble to grow. So, this is for this situation, okay. That Tw - T

sat must be greater than this because this has to be satisfied, okay. 

Now, if the bubble is only inside this, which is this particular case, the bubble is wholly inside

this. This Tw - T sat, okay has to be greater than 2 Sigma T sat divided by Rho v hlv into Rc,

okay and 1 - Rc by 2 delta when Rc is less than delta. So, that is for this case. That is the

condition for bubble growth, okay. 

So, this is what for heterogeneous bubble growth first was given by Hans and Griffith who

showed one comprehensive relationship that what kind of cavity sizes will be active, okay

depending on the thermal boundary layer thickness. Whereas, on the other hand, Howell and

Seigel said we considered two extreme cases. 

One  in  which  the  bubble  is  protruding  out;  in  the  other  case,  the  bubble  is  completely

confined within the, within the thermal layer. And they showed for a very large variation in a

cavity sizes from point 1 to 1 mm that there are two limiting conditions when the cavity size

is large in, in order for a bubble to grow, you need to have this relationship. 



For the other case, you need to have that relationship, okay. So, these are the two things that

Siegel and Howell actually found out, okay. So, we end this lecture with this, okay before we

move on to the bubble detachment. So, right now, we have studied the bubble formation and

bubble growth, okay. Now, we are going to see bubble detachment, how a bubble actually

detaches from a surface.

This is the growth part, right. But ultimately, the bubble detaches and then, it goes into the

main fluid, right. So, how to study that? That is, will be the topic of the final lecture that we

are going to do on this, thank you.


