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Droplet combustion-II

Welcome to today's Lecture!  So, as we said in the last class, we actually did that how a

droplet actually combust and we show that the D square law is still valid. 
(Refer Slide Time: 00:36)

If you recall, this was the equation that we wrote where Kc is basically the burning rate which

is constant in the current case, okay. Now, remember in previous D square law derivation we

always said that the gas phase is always considered quasi steady, right. So, here also, if you

take just a ratio of Kc divided by the diffusion, okay you will get, it comes out to be Row g

by Row l which is of the order of 10 to the power of minus 3 to 10 to the power of minus 2.

So, it essentially implies that the surface regression which is given by KC, okay is slower

than gas diffusion which is given by D, okay. So, hence, gas phase quasi steadiness still holds

and that was the same of what we got in the droplet vaporization case, okay.And remember

also that Tf was the adiabatic flame temperature. This we wrote in the last class also. 

Flame  temperature  for  this  statiometric  flame,  okay  and  during  this  period  of  droplet

combustion,  the  regression  rate  and  this;  you  should  remember,  the  regression  rate,  the

reaction standoff distance ratio, standoff distance ratio. Ratio is given by rf by rs. So, r f

actually decreases r s also decreases by the same amount.



So, these and the flame temperature that is Tf, all remains constant. Please do remember that

rf by rs remains constant, not rf by itself,  okay. So, as the droplet shrinks the flame also

shrinks,  okay.  But  this  relative  ratio  is  kept  the  same,  okay.  So,  and  Tf  is  the  flame

temperature  that  also  remains  the  same.  The  regression  rate  which  is  given  by  Kc  also

remains the same.

So, all these things are the hallmark of this particular analysis which is basically the D square

law, right okay. 
(Refer Slide Time: 03:29)

Now, we take a  look at  single droplet  single component  droplet  vaporization  component

droplet vaporization, okay. Now, it is very similar to the evaporation case evaporation. So,

here what is given as mv, qv effective, this is like your L effective in Sirignano’s notation is

mv into qv + 4 PI r square lambda l, dt by dr at r s minus. rs - that is because it is in liquid

phase, in the liquid phase, got it, okay. 

So, in this case, if there is no internal, so, this is the heat that is transferred to the liquid phase

essentially, right  okay. So,  if  there is  no internal  recirculation,  okay, the unsteady or the

transient heat transfer is HT is given as: this we are writing it within the droplet, okay. This is

basically nothing but the slowest limit because, why it is the slowest limit? Because the heat

is transferred by conduction essentially in this particular case, right. 

And you have the boundary conditions and initial conditions that t=0= T naught everywhere.

And at  the center  of the droplet  you know that  and r  = 0 this  is  equal to  0.  This is  the

boundary condition that is the initial condition, okay. So, the source of unsteadiness in this

particular problem comes from the decreasing value of r, okay or the rs rather. 



And the continuously changing profile of Ts, so, Ts is a function of time rs is a function of

time; two main sources of unsteadiness. And this has to be the slowest limit. This is because

we have taken only the diffusion to be the carrier. So, the droplet surface gets heated slowly

the heat goes to the center of the droplet and that's how the heat is actually transferred. 

There is no recirculation. It is only a plain diffusion or a conduction problem over here, right

okay. 
(Refer Slide Time: 06:15)

Now, we already know from our droplet come a droplet  vaporization counterpart.  That if

droplet temperature, is spatially uniform, which is one of the assumption okay. If it is like that

but temporarily vary. This I am just reminding you, right temporarily varying. You have this

mv qv effective is equal to mv  qv.  

If you recall your old notes, you will find that this is what we did. This is rs cube, Cpl. Then,

row l into dTs by dt, right. This is frequently used for determining Ts. And this is roughly

what  we  call  the  infinite  conductivity  model  also,  right.  That  means  that  there  is  no

temperature variation within the droplet, okay. 

So, that is the diffusion limit. This is that in finite conductivity counterpart of the same, right

okay. Now, if you, that is the diffusion limit. So, like vaporization, you have to solve for all

these equations, okay. Now, we can define the gasification Peclet number. You already know

the definition of Peclet number. 

So, this gasification Peclet number is given by the burning rate kc divided by alpha l or the

liquid thermal diffusivity, got it. Now, if this Peclet number, Ph is much, much less than 1,

this implies a very high value of the thermal diffusivity, right because if this is much, much



less than 1, that means kc is much, much less than alpha l which implies that the liquid phase

thermal diffusivity, diffusivity is very high, right. 

So, this would normally lead to your uniform temperature which is basically this case, right.

If the Peclet number is much, much greater than 1, okay this should lead to a thermal gradient

inside the liquid phase, okay. So, in other words, this is the droplet, okay the temperature will

go like this, right; little heist at the surface and lowest at the court right, okay. 

So, the difference comes from the Peclet number argument that we have put forward over

here. So, infinite conductivity is the fastest, okay. Diffusion limit is the slowest, right. So,

both depend on what is your gasification Peclet number which is nothing but the ratio of the

burning rate divided by the thermal diffusivity. So, keeping this in mind, okay let us now

move to the presentation mode.
(Refer Slide Time: 09:35)

So, this is what we did once again this comes from C K Laws material. So, this is we already

put  forward  in  writing  that  this  is  basically  the  unsteady, sorry, let  us  do  so.  This  was

basically  the  unsteady  diffusion  an  unsteady  conduction  term,  okay. And  this  assumes  a

continuously regressing droplet layer.

And this is the corresponding conduction term of the heat that is actually transferred within

the droplet core. So, that is what we did in the write up that we just did, right now.
(Refer Slide Time: 10:10)



And this also we did that if the Peclet number is much, much less than 1, very high liquid

phase thermal diffusion or low gasification. This is an infinite conductivity limit. On the other

hand, when Peclet number is much, much greater than 1, this is a diffusion limit. So, both of

these two limits actually determines whether we can take the droplet to be a in the infinite

conductivity or the diffusion.

Diffusion  is  basically  like  a  spherically  symmetric  droplet  evaporation  model,  okay. So,

diffusion  limit  therefore  always  allows  heat  diffusion  and  hence  represents  the  slowest

possible limit while this suggests the fastest possible limit infinite conductivity, okay. (Refer

Slide Time: 11:05)

So,  now, if  we look at  the  temperature  profiles  of  the  droplet,  but  how the  temperature

actually evolves with, with non dimensional time? You will find that in the case of yours

diffusion  limit,  that  is  the  curve.  And  in  the  case  of  your  distillation  of  the  infinite

conductivity limit, that is the curve, right. 



So, what you find is that in the diffusion limit the temperature initially increases very rapidly,

okay. And then it starts to slow up. That is because the core of the droplet starts to heat. So,

here the surface temperature rises is very fast, right. The core is still does not feel the heat,

okay. Slowly, as time goes on, the core temperature also starts to rise. 

That is also shown in this particular curve. This is a center temperature, only valid for that

diffusion  limit;  because  in  the  case  of  infinite  conductivity  limit,  there  is  no  difference

between surface temperature and core temperature,  right because both are the same; it  is

spatial uniform.

So,  here  you can  see  that  initially  the  core  temperature  hardly  rises  that  is  because  the

diffusion,  the diffusion front has to propagate and reach the droplet  center, right.  As you

know, that that is given by something like alpha lt right, okay so, there is a little bit of a time

lag, before the core starts to feel the heat essentially. So, as it starts to feel the heat the surface

temperature slowly starts to slow down and the core temperature starts to go up, okay. 

Now, in the case of an infinite conductivity limit as you can see the increase in the droplet

temperature is more like this, right. So, essentially follows, okay. This is initially slower this

is initially a little slower compared to this; if you look at the difference between the two

curves. That is because here the entire thermal mass of the droplet is being heated, right. 

It is dr just not the surface you have to take into account the full mass of the droplet because

every where the temperature is the same. It is not like that, that the center temperature is

lower, right. Everywhere the droplet temperature is like a horizontal line, right. And it just

goes up with time. So, therefore naturally, there is a difference this has got more thermal mass

and as a result it takes a lot of time for it to go up.

Whereas this can go up very fast because only the region very close to the surface is actually

heated,  okay  and  the  heating  front  actually  reaches  the  center  only  after  this  particular

prescribed time. So, there is quite a bit of a time line between the two, okay. So, you can

clearly see that in the case of a infinite conductivity model, okay. There is an additional the

increase is initially slow because of the additional heat requirement for the core region, okay.

So, that should be taken into consideration in this particular plot. So, this is just to give you

an idea that what happens when you have the 2 limits, okay. 
(Refer Slide Time: 14:01)



Now, similar things can be; one other interesting observations and the main observation that I

want you to take from this particular thing is that the intense droplet heating that we have and

therefore the rapid increase in the gasification rate, right. During that initial part, when the

droplet surface temperature is actually growing before it actually flattens out.

This contributes to less than ten percent of the droplet lifetime, right so, for ten percent of the

droplet lifetime, okay. There is an increase in the gasification rate after that the gasification

way it becomes quite steady, okay. So, this rapid increase in gasification rate due to intense

heating of the droplet lasts only for ten percent of the droplet lifetime. 

After that the droplet surface temperature kind of flattens out, as you can see, over there,

right. And this is also seen in the regression, diameter regression plot you can see that the

droplet. Actually this is the line from this point onwards this is a very linear decrease, right in

the droplet diameter. Do you see that?

It is a linear decrease in droplet large diameter pretty much after about ten percent of the

droplet lifetime after that initial intense heating is over, right. So, and therefore, of course,

here also, you can see that the diffusion limit is the slowest the distillation limit or the infinite

conductivity limit is that is the kind of the; so, you can see, these two things comes very close

to each other, okay. 

So, the main concern over here is that during the intense heating period, okay that time the

radius regresses linearly with time. And this time period is only ten percent of the droplets

total lifetime. That is an important observation, okay. 
(Refer Slide Time: 16:00)



Now, in  single component  these observations  now, kind of  compiled  over here;  that,  for

active droplet heating, okay and gasification, okay occur sequentially in the initial 5 to 10

percent of the droplet lifetime depending on the fuel volatility of course and the initial droplet

temperature. So, the active droplet heating and gasification occurs during that period, okay.

So, active droplet heating means a sensible enthalpy transferred to the droplet. 

Now, that  takes  place  when the  temperature  is  low. A low temperature  implies  low fuel

vapour concentration and consequently slower gasification rate; because if you recall, okay

from the Clausius-Clapeyron, okay the vaporization rate is a function of the Pv saturation,

right. And that is a function of the surface temperature essentially, right. So, if the surface

temperature is low because the droplet temperature is not initially at the wet bulb limit.

When the surface temperature is low, okay there is a slower gasification rate because there is

a lower fuel concentration at the surface, right. So, as you increase the droplet heating or as

the droplet surface temperature increases the gasification rate also increases, okay. So, as the

temperature is increased close to the final value, the heating rate must slow down while the

gasification  rate  increases  because  of  the higher  fuel  vapour concentration  at  the  droplet

surface, okay.

The bulk  gas  phase  this  is  also an  important  statement.  The bulk  gas  phase  combustion

characteristics  are  basically  insensitive  to  the  detailed  heat  transfer  processes  within  the

droplet, got it. So, in the case of the bulk combustion characteristics their intensity to all this

whether, whether you are taking infinite conductivity or diffusion limit  etcetera,  these are

mostly insensitive, okay to the entire thing. This is from the droplet perspective, okay. 
(Refer Slide Time: 17:58)



This is another important slide which actually we want to bring forward one key factors,

remember, we said that mv =mc, we said that whatever is reprising, it goes towards burning,

okay right. That is what we said when we actually derived the d square law. But in reality that

is not the case. There is, if you recall, the droplet graph, this is the flame front, right. 

This is the inner region, correct. So, this fuel whatever vaporizes from here can actually get

accumulated in this region and not all of them are consumed at the flame front, okay. So,

there can be an accumulation. So, as you know, that a d square law takes place that there is no

accumulation, right. So, if I divide mc by mv, what you will find is, that the straight line is

basically your d square law, right at one, right. 

But what do you see over here is very interesting, okay. You see over here. Let us not look at

this part of the plot. The second one, okay let us look at this plot only the left-hand side, okay.

So, the gasification grade or the droplet  surface is therefore given as a linear sum of the

consumption at the flame front which is basically mc. And the accumulation and depletion

rate at the inner region, right. 

So, if you have to put it in this particular form it is basically mc plus this particular term

where rs and rf designate the droplet surface and the flame standoff distance, okay. So, it is

basically basis to, this is the droplet. So, this is your rs and this is your rf, right okay. So, what

you see in this particular plot? That ideally the ratio should be one because that is what D

square law actually prescribes.

But do you see that? For example, in oxygen-depleted environment, yo  infinity, if the flame

is burning, this is a result of our for an N for n-heptane droplet in a 300k atmosphere, okay

300k room temperature burning, okay. So, here if it burns in a low oxygen environment, you



see that this ratio approaches 1 but for a significant part of the droplet lifetime, it is not, right.

It is quite low. Actually, the consumption rate is only a very small fraction.

If you look at these horizontal lines, right, there are only a small fraction of the gasification

rate. That would imply that there is a lot of fuel which is basically accumulated in that inner

region,  got  it,  right  okay.  However,  it  does  go  and  reach  as  we  increase  the  oxygen

concentration, right. 

As you increase the oxygen concentration and at around 2.8 for this basically becomes flat

and very close to 1, that implies that you are approaching and behaviour in which there is

virtually no accumulation as such, got it. And the flame standoff distance essentially mimics a

very similar characteristic, okay. 

So, this  flame standoff distance has been normalized  by rs.  So,  if  you recall,  rf  by rs  is

supposed to remain constant,  right so, but that it  does remain constant,  when the oxygen

environment is high. Other than that, it actually changes quite dramatically, okay. So, the fuel

accumulation is a real problem, okay. 

And if you are burning in a low oxygen environment, right the flame the fuel consumption

rate comes down drastically, got it, okay.
(Refer Slide Time: 21:43)

Now, we so far have only taken into account a spherically symmetric model, right spherically

symmetric  model.  Now, if  we include  the  internal  recirculation  like  what  we did  in  the

droplet vaporization case, correct, okay. Now, in this particular case, if there is a flow around

the droplet which is in the normal cases, it is, right. What you will find here is that you can

find two kinds of characteristics.



There will be that internal flow that will be created within the droplet which is once again

represented by the Hill Spherical vortex, right okay. And this is the flame front. In addition

you have this egg-shaped flame front, right. So, lot of the flame actually burns in the wake of

the droplet, okay. And there we get a lot of soot and other kind of features, right. 

So, this is a very things flame that actually burns but the velocity that is created within the

droplet is basically given by the Hill spherical vortex. You can have certain cases. This does

not take into account separation. There is no separation; there is no fore-and-aft asymmetry of

the droplet, so to say, right. So, there is, no asymmetry. Moment there is a symmetry that you

create because of the separation; this is a separation, right.

This is a separation bubble that you create in the aft of the droplet the recirculation structure

is a little bit more complicated. Now, you get like four recirculation pockets, right okay and

there is a clear asymmetry between the vertical here of course, it is very symmetrical. This is,

this is not symmetrical anymore and you still get a flame which closely moves towards the

droplet, okay.

A lot of the flame burns in the wake so this droplet has got a more complex recirculation

structure. As you can see which cannot be represented by a Hill Spherical vortex anymore,

got it. But, we are mostly concerned with this kind of flame for the ease of doing analysis,

right. So, how to analyze this? What does the liquid phase transport do? It effectively reduces

the diffusive, the dimension of the diffusion heating, right.

So, diffusion what it does is that the surface temperature skyrockets, right. And then, this

diffusive front takes some time to propagate to the droplet center, right. Within turn and this

length scale is basically L or something like that, right. What does this do is, the internal

recirculation because of the convection they reduce this length scale the effective length scale

of diffusion.

So, because we already, you know, when we consider the Sirignano’s Effective conductivity

model, we remember, we did something like K effective which was more than some factor

Chi into K, right. So, it is very similar to that. It essentially means that your diffusivity is

enhanced, right. And it can be enhanced by an order of magnitude also, okay in certain cases.

But how do you write the equation for within the full solution for the energy and the species

you have to take into account,  these two equations  once again.  You have seen these two

equations earlier. This is basically the heat transport equation. This is basically the species if



it is a by component droplet that means of well and some other component you have to write

it for that fuel component over here, right. That we did already earlier.

So, you can see that this entirely think these two are basically  the convective derivative.

These two are basically the corresponding diffusion terms, right. And this VR and V theta are

given by that Hills spherical vortex, right. Similarly, we can write the species. We get the

Lewis number over here and which is alpha by d, okay. And once again these two terms are

basically given by the by the convective derivative.

And this is basically the diffusion term once again the regression rate of the droplet has been

included in this particular analysis over here, okay got it, okay. So, in the case of when you

actually  have  recirculation  within  the  droplet,  you  just  have  to  follow  the  exact  same

methodology as you did for the droplet  evaporation,  right. And then, you have the liquid

phase analysis roughly remains unaltered, got it, okay. 
(Refer Slide Time: 26:02)

We would not cover these, okay. This is also an important thing that when you actually have a

signal droplet combustion. We have so far considered that the gas phase does not have in the

spherically symmetric model at least. We have considered that a gas phase does not have any

external influence from external convection,  right when we did the spherically symmetric

droplet, right. So, it was burning in an quiescent environment right. 

The only question of gasification Stefan flow was that surface glowing effect that you had

due to evaporation, right. But as we can see, light in the case of evaporation right as I gave

you that example earlier, if you want to say cool a saucer of milk ok how do you do you blow

air  over it,  right.  So,  in  this  particular  case,  when you actually  have a strong convective

environment around the droplet, right it influences the flame.



It influences the droplet burning, okay. Now, due to vigorous burning external convection

generally increases the droplet gasification rate, right. So, the gasification rate because you

are removing that boundary layer, right you are removing that fuel vapour. So that more and

more soil can actually go in.

So, what people have done? There are a lot of empirical correlations. See, the actual analysis

of this is a very time-consuming affair. So, we are just giving you the gist were here k naught

is basically considered to be the gasification rate in the spherically symmetric limit.  That

means in the limit when it is burning in a quiescent environment, okay. And this is applicable

for both droplets burning as well as droplet evaporation.

K is the corresponding burning rate or gasification rate of vaporization rate when you actually

have convection present, right. So, this is given by this particular ratio and this ratio has been

plotted over here, okay. So, this ratio has been plotted over here. And so and this is of course

for normal gravity and microgravity.

Let us not go into the details of that. So, for Force convection, this was given, given by Jerry

Faeth in 1977 which says that what is the ratio of these two: So one will become, when his

factor becomes equal to very small term, then k and k naught will be the same. Other than

that k is always greater than k naught by some extent, right because this, if this is a non-zero

quantity, right.

This cannot be negative, right. This is a nonzero quantity because Reynolds number, Prandtl

number normally  cannot  be negative  period,  right.  So,  this  will  be greater  than 1 for all

practical  purposes,  right.  So,  this  was  given  for  forced  convection.  Similarly,  for  free

convection, we already said our natural convection we always already define a number called

Grashof number if you did if you recall earlier and we said the grashof number of the order of

1 to 10 is kind of not, it is almost similar.

So, you can say that it is all it is almost natural evaporation may not have much of a much of

a say. So, even in that particular case, in these two are the formulation as you can see clearly

this is a Grashof number of one-fourth function, this is a Grashof number of half function

which once again is an empirical correlation which says that how the burning is augmented,

when you actually have natural convection.

 How burning is augmented when you have forced convection and this is given in terms of

Reynolds number, this is given in terms of Grashof number. The normal quantities, however,



it should be noted that, if you increase the rate of convection over a droplet, right there is a

limit up to which you can increase its gasification rate. Beyond that what will happen? The

flow the flame will actually extinguish. You will have no flame, right. 

It is almost like blowing off your candle, right you blow it slowly. What happens is that the

candle burns, right. But if you blow very hard at the candle, what will happen? That candle

flame will extinguish, right. So, you have to keep that limit into consideration, that the flame

may actually gets extinct, if you have too high of a forced convection, got it okay. So, that

should be taken into account when you actually do this kind of analysis.

So, these are two empirical correlations which you are given by Lauren Williams and Jerry

Faeth, okay which actually tells you that how the burning rate is actually augmented from the

spherically symmetric limit, okay when there is a convection quantity present, okay.
 (Refer Slide Time: 30:43)

So, this will be the last slide of this particular lecture. So, in a practical situation however,

what you have is that not only you have like a single droplet burning, you actually have a

cluster of droplets burning, right that is what is a normal behaviour of a spray. If you look at a

spray you will see that there are hundreds and thousands and millions of droplets which are

present, right okay and they look like this. 

So, in so, you can get you get you can you are not able to distinguish the flames properly,

right. They are all kind of very close together they burn as an ensemble, right rather than as

individual  pieces.  Now, obviously this  problem is very complicated because it  is 3D, the

spacing between the droplet actually matters a lot. 



And the D square law does not hold here because of separation distance between the droplet

surfaces increases  as the droplet  regresses.  So,  if  you have like two droplets  sitting here

burning very close to each other so you may have a common flame which enshrouds the two,

right. But as time goes on, these two droplets become smaller, right. 

And their separation distance now has increased. So, you get individual flames on the two

droplets. That is also possible, right. So, the minimum, so there exists a minimum droplet that

separation distance below which the individual flames will merge. That means if the droplets

are  very  close  to  each  other  the  flames  will  kind  of  join,  so  you would  not  be  able  to

distinguish one claim from another.

So, it is like interacting droplet flames so to say, right. So, in this particular case if I plot kc

by kc isolated kc means the burning rate of the ensemble, kc isolated that if we take that

single droplet out of that, what will be the burning rate? So, in that particular case, what you

have is that, okay. 

If you see, look at this particular curve, one is once again when both are the same, right. So,

as you increase your L by D this L by D is basically this these are two droplets. So, this is

your l and this is your D, right. So, add your L by D ratio increases, right, you approach this

value of one that means the individual droplet burning behaviour is re-established, right.

But  whenever  you are  away  from where  the  droplets  are  very  close  to  each  other  your

burning rate substantially slows down, right because it reduces the gasification rate because

of the competition for oxygen. Both the droplets are competing for the same oxygen source,

right. So, naturally the burning rate is very low, okay. 

When you have this merged flame but as you go towards you but you do proceed towards the

value of one as you increase by the L by D ratio all right, okay. So, this is the result for

undergoing quasi steady burning. There is no buoyancy effect over here. This actually shows

that you do approach the limit of one, okay when the separation distance is about five, got it. 

All the droplet seems to be approaching that same value, right it is highly dependent on L by

D and the gasification rate is actually substantially lower. You can see it is roughly sometimes

30 percent sometimes 50 percent right okay.  So this is important the d square law does not

hold  interaction  reduces  the  gasification  rate  and  there  is  a  minimum droplet  separation

distance below which you cannot identify the two flames together. 



That two flames gradually de merge, okay. As you increase the L by D ratio depending on

whatever is the diameter and the separation distance of the two droplets okay. So, you will

see in the next class what happens for that rest of the droplet scenario, okay. 


