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Comprehensive droplet vaporization model and correlations-II

So, welcome to today's lecture. So, in the last class we mentioned that what are the modified

Nusselt number and Sherwood number in this particular case. So, now let us look at the, what

is the form of this F which we already mentioned in the previous lectures. Here we will once

again for the sake of completeness we will reiterate that okay. 
(Refer Slide Time: 00:41)

Sirignano this is; Abramson and Sirignano model essentially so, they as I said that at all used

the Falkner-Skan type of solution which with me reiterate is flow over a wedge basically flow

past a vaporizing wedge okay. So, it is a laminar boundary layer that is actually formed.

So, in those cases  there are some restrictions on the BT and Bm okay. So, they are both less

than 20 and this we already mentioned earlier the Schmidt number and the Prandtl number

were less than 3. And the beta which is basically the wedge angle is within this right that is

what Sirignano used flows faster vaporizing wedge and the corresponding laminar boundary

layer right.

So,  using  similarity  solution  what  he  showed this  will  also narrated  earlier  that  FB was

nothing but 1 + B raised to the power of point 7 ln 1 + B divided by B, this we did in the last

lecture right. So, using that solution using similarity solution here, this is what is showed

right.  So,  there are  some interesting exercises that  people did people studied what is  the

variation of this FB.



This FB has got some variation right so people wanted to study that what is the variation of

this FB in the current context. So, they found that FB varies from basically 1 to 1.285 okay as

B which is basically done Spalding heat or mass transfer number varies from 0 to 8 okay. And

when the heat transfer number was within 28 to 20 this FB is basically a constant, it does not

vary at all. 

This was an interesting observation right. So, there was about the 30 percent change in FB

when B actually increased from 0 to 8, right. But there is a corresponding saturation of FB

also that means a near constant value of FB for the major part of B that is from B from 8 to

20,  it  does not  change at  all  okay. So, that  was a  good thing  that  was devised that  was

observed okay.
(Refer Slide Time: 03:26)

Using that when you actually what is your m dot m dot we are going to substitute all these

things into m dot because S, Sh star and all those things were there in m dot. Let us look at

the mass transport limited m dot okay. So, this is rs  2 + S naught - 2 divided by 1 + so I am

substituting everything over here .7 ln 1 + BM divided BM close it 1 + BM. If you look at

this now, this and this gets cancelled okay.

So, your m dot basically scales as sum B, this B goes into the top right sum B divided by 1 +

B, let us keep it generic. So, because this will be valid for the other one also right. These two

gets cancelled okay this BM goes up, so this is basically B by 1 + B to the power of 0.7 right.

So, this is valid for a very large set of Reynolds number actually 2000 and for B less than 2.8

got it, clear.



So, this comes from basically substituting the value of m dot. So, we have just substituted for

what we have substituted for Sh star and Fm. These two have been substituted here right that

is how we got this expression. Now also note because we still have these two numbers which

are  basically  unknown  right  Sh  naught  and  Nu  naught  this  is  the  Nusselt  number  and

Sherwood number.

So, note that those are given by standard correlation; this is for non-vaporizing sphere okay.

And it actually has been shown that it overestimates for Reynolds number less than equal to

10 okay. Because this is for non-vaporizing because these are for non-vaporizing right as you

have we already stated okay. So, clip at all they actually suggested a modification to this.

All these are very empirical sometimes okay. So, do not be bothered about the nature of the

thing that is because as you know in fluid dynamics may most of the problems do not have a

clear-cut solution. So, you have to resort to these approximate analyses, so these are not exact

analysis. These are all approximate analysis so to say okay. 

So, 1 + Reynolds number Schmidt number to the power of one-third f Reynolds number

right. So, this is valid for Reynolds number less than equal to 400 up to that limit it is actually

valid okay. Now this Fre has got two forms, Fre is basically equal to Reynolds number raised

to the power of .077 and Fre = 1 for Reynolds number less than equal to 1.

This is for Reynolds number in greater than one right okay, you put a demarcation mark here

there is no confusion right. So, these are that fact that all these are very empirical but I want

you to get a feel of that thing that the mass evaporation rate is a function of the heat and mass

transfer numbers right okay.

And the  normal  non-vaporizing  Sherwood  number  and  Nusselt  number  is  given  by  that

particular expression right. 
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Now we once again revisit the liquid phase analysis now that we have done this the liquid

phase analysis become whatever we did earlier right, let us put all the things in perspective

now. Now the liquid phase analysis okay, what we have to do as I said earlier that we are

interested  to  know what  is  the  temperature  distribution  right  and how it  looks  like  with

evaporation of the droplet.

So, you already know that QL is basically given by this right, correct, that is what it is right

CPF this is the enthalpy, this is a specific sensible enthalpy part. That is a latent heat part

right.  So,  this  goes  towards  the  inside  the  droplet.  So,  what  we  need  to  predict  the

temperature inside the droplet, so, our job is to basically predict the temperature distribution.

That is one of the important  things, temperature distribution right to do that what people

normally do is that we assume that there is an infinite conductivity model right that is what

we  did.  Infinite  conductivity  model  means  that  Kl  of  the  liquid  phase,  Kl  or  lambda  l

whatever you call it is very, very high right.

So, that means the temperature is spatially  uniform but temporarily  vary, temperature the

liquid is spatially uniform but varies temporally that was the infinite conductivity model right

infinite  conductivity  model.  We have  already  seen  this  right,  similarly  there  could  be  a

conduction limited model, conduction limit okay where heat transferred through the droplets

only happens due to thermal conduction okay.

So, the conduction limit  is that heat transfer inside the liquid phase happens only due to

conduction right, solely due to conduction. And of course the surface temperature is uniform

correct, is that clear. So, these were the two models that we already looked at earlier right the

conductivity limited model and this right.



However now we have a situation as we said earlier there is intensive internal recirculation

and what is the role for that. We are interested in this particular portion right. This is called as

we said earlier by surface friction nothing else other than surface friction okay. When we

already have defined the Reynolds number as Us into d of the droplet Rho L by Mu L and the

Peclet number is given as well.

So, this is basically as we said is a U max or maximum velocity at droplet surface right. This

is we already said that it is greater than equal to the Reynolds number, the normal gas phase

Reynolds number right. So, here we already say it something about the vortex model and how

it  does  a  very  good job  in  which  the  flow inside  the  droplet  is  represented  by  the  Hill

Spherical Vortex Scenario right. 

So, here we said that Hill Spherical Vortex and we already said what are the equations that it

solves;  Hill  Spherical  Vortex  is  actually  a  reasonable  solution,  okay. And  of  course  we

continued that  the  surface  temperature  is  uniform,  we said uniform we did  not  say it  is

constant right.

We did not say that the surface temperature there is  no spatial  variation it  is only at  the

surface but the temperature is uniform that means along the surface there is no temperature

gradient okay which would have brought the Marangoni and other kind of stresses into the

picture. And in reality that can happen actually because you have a wet behind the droplet

okay and all those things.

But  for  the  time being  for  in  this  particular  consideration  for  the  vortex  model  we  are

assuming and for many other models also we are assuming that this surface temperature is

actually uniform across the across all levels okay. And this Peclet number is also high it is

actually some times greater than 10,  greater than 100 in most of the times it is actually

greater than 10 at least okay so high Peclet number situation okay.
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Now let us look at from the Hill Spherical Vortex what we have if you cast it in terms of

velocity  this  is  a  radial  component  of  the  velocity  okay. And  this  is  the  corresponding

tangential component of the velocity okay. So, these are velocity is given in the spherical

coordinate, if you are unsure about the spherical coordinates I suggest that you pick up a fluid

mechanics book and see okay that how it happens in a spherical coordinate.

So,  this  is  basically  the  radial  component  of  the  velocity  this  is  basically  the  tangential

component of the velocity. So, these are the two components okay. We also assume that the

Hill Spherical; this velocities are by the way variable okay. They are not constant okay but we

assume that the Hills Spherical Vortex applies to the unsteady situation also.

And during the vaporization of the droplet the simple reason is that we already established

that the vorticity transport happens in a much shorter time okay and that is the reason why

this we can actually go buy it okay. So, even when the; so, formerly writing it Hills Spherical

Vortex solutions is applicable for number one vaporizing droplet right okay.

Vaporizing droplet  and unsteady and we already established why that should be the case

okay. And we also see that the streamlines are insensitive this is an important observation

insensitive  to  internal  Reynolds  number  that  is  ReL.  So,  the  streamlines  are  basically

insensitive there is an experimental confirmation also on this. 

People who have measured the velocity inside the droplet you can see that streamlines are

basically insensitive to the liquid phase Reynolds number okay. Now to look at some of this

thing okay and in order to explain one final time, so we already established let us go to the

next page.
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To have the screen, so, the hydrodynamic characteristic time of establishment of velocity, so

this  is  the  time  for  establishment  of  velocity.  Within  the,  or  stabilization  or  velocity

stabilization within the droplet, now that is given by ah when the Reynolds number of the

liquid phase is very, very low, much, much less than one basically viscous the entire droplet is

basically viscous okay.

Let us take you; take a droplet of honey okay or a glycerol droplet which viscosity is very

high okay and that will give rise that the velocity inside the droplet will be very low. So, in

that particular case your t hydrodynamic is basically scales as rs square divided by gamma L

right which is the kinematic viscosity.

Now in the high Reynolds number that means there are also some are much, much greater

than 1 high Re. The same t hydrodynamic therefore now will be, now will scale rs by Us, Us

is nothing but the surface velocity right. So, in other words, this will be equal to rs square

divided by gamma L into Reynolds number L, right. 

So, what we can see is that if the Prandtl number now; so, in this particular case okay one can

readily see  that this hydrodynamic time scale is much, much shorter than that, no doubt right

this hydrodynamic time scale should be much, much shorter than that, okay. Similarly if you

talk about some kind of a thermal scale okay thermal scale which is responsible for some

kind of a say the temperature differential okay.

That is still scale as rs square by alpha L right and into the usual case is t hydrodynamic is

actually much, much shorter than this t thermal okay. So, this basically justifies that why the

Hill Spherical Vortex is always a good solution okay. And why it is actually a quasi steady



kind of a thing okay. And this happens also because your Prandtl number is always of the

order of 1 of the order of 10 over here okay.

Now that key feature that evolves out of this, if you look at the previous slide. So, you can

see that there is in order to compute these two velocities we need this, this Us which is the

surface velocity right, we need that. So, how to actually calculate that is the question that is a

long standing question.

So, it should definitely come from the friction because that velocity is induced by friction

right. So, let us calculate the friction force so when we calculate the friction force this is rs

square is the r theta g sine square theta d theta so this is a shear stress on droplet from gas

side coming from the gas side right that is why I wrote g over there.
(Refer Slide Time: 20:10)

And we already said that this r theta g is the same as r theta l right why that happens because

there is no surface tension gradient we already said that right uniform temperature across the

surface right. So, what we do immediately after this is that now that we know evaluate r theta

l from Vr and V theta that is easy right.

Because you know what Tr theta is right, so it is basically the cross derivatives well once we

know that from here and I am not showing the steps again the steps of messy. So, this is Us is

1 by 32 delta u infinity which is basically nothing but the relative velocity Mu g by Mu l Re 
 into CF. Now this is basically a relative velocity the velocity okay between the gas phase and

the liquid phase.

This is basically a skin friction coefficient comes from the friction right, so this is like a skin

friction coefficient that we have. Now this screen friction coefficient in turn is a function of



the Reynolds number Mu l Mu g of course Rho l Rho g and it also depends on the spalding

heat and mass transfer numbers. 

This is like simple common sense intuitive sense should actually tell you that if this is the

velocity profile that we get at the surface then it must be dependent on these parameters okay.

Now for a solid non vaporizing again; we move to the same type of analysis for a solid non

vaporizing sphere I think what we have CF is basically given as 12.69 Reynolds number to

the power of minus two-third.

This  is  valid  between Reynolds  number all  the  way up to  100,  10 to  100 right.  So,  for

example if your Reynolds number is 100 okay Mu l by Mu g is greater than say 10  or 55

okay this Us by delta U infinity that means the relative velocity will be given as 0.184 and .

0335 respectively. 

It is just to give you an example it understood that the Reynolds number external Reynolds

number is of the order 100 is Mu l by Mu g is of the order of 10 or 55 you can see when it is

10 that means the ratio of the density of the of the viscosity between the liquid and the gas is

only 10 times okay. 

The gas is obviously 10 times less viscous than the liquid you have that your Us that is the

velocity that is created at the surface of the droplet inside the liquid phase right is actually

about 20 percent of the velocity of the relative velocity right. So, if the relative velocity is say

5 meter per second this will be more like 20 percent of 5 meter per second, got it, okay.

On the other hand as we increase the viscosity ratio to 55 that means the liquid phase perhaps

has become a more viscous fluid say for example it is become glycerol, glycerol and water

mixture something like that right okay. You will find that the velocity of Us for the same

velocity in the external phase is actually a much lower number it is only about 3.5 times, 3.5

percent right.

So, you can see as you make that inside of the droplet more viscous less will be the velocity

that will be created by this surface friction right. If then if the viscosity difference is very

small  okay like of the order of 10 right significant amount of velocity is actually created

inside the liquid droplet.

This is quite obvious that is because if the viscosity which actually determines what kind of a

velocity you will generate inside the liquid phase for a given outer phase flow field right. So,



we have kept the outer phase flow field that is the Reynolds number to be the same at 100 in

both the cases except we have played with the viscosity.

As you make the viscous viscosity ratio higher and higher you get lower and lower surface

velocities in the liquid phase. So, that is an interesting observation that we have over here

okay.
(Refer Slide Time: 25:10)

So, moving on to the next one okay, so, for evaporating sphere, so this is non evaporating or

evaporating sphere okay friction is reduced by surface blowing the friction is reduced for

your CF will be 12.69 into Reynolds number to be the power minus two-third. Sorry wrong

expression. 

So, when you actually have the Reynolds number; you have the skin friction coefficient this

12.6 line still remain this Reynolds number two-third also remains. You have 1 + BM that

comes over here this is valid for B less than 0.78 whereas the same expression will be 12 .69

divided by Reynolds number to the power of two third 1 + B raised to the power of .75 at B

less than 20, got it, okay.

We got it so, this particular part is quite obvious now the skin friction coefficient is given, it

is actually reduced because of the surface blowing because of the thickening okay of the

boundary layer right. So, this will in turn reduce your Us that means the surface velocity that

you are going to generate inside the liquid phase.

Now we are in a perfect now that we have analyzed everything you know Us and everything

now the transient heat transfer now is transient heat transfer now can be solved. How it can



be solved and this is a long equation with all non dimensionalized. So, you can open it up and

you can see it yourself also.

This  beta  is  not  the same as the wedge will  show you what  that  is,  sine theta  complete

spherical coordinates got it, long equation nothing to be afraid of. It is a spherical coordinate

we have written basically the advective, convective advective equation okay within the liquid

phase.  So,  your  rs  prime is  basically  equal  to  rs  by  r  naught,  r  naught  being  the  initial

diameter.

Nita is the normalized r access Vr prime is basically Vr by Us, V theta prime is basically V

theta by Us, Z is basically T - T naught by T naught, Tau is basically alpha lt by r naught

square okay and beta is basically equal to not the wedge angle I know that there are some

notational issues always d Tau okay. 

So this is basically proportional to the surface regression, got it okay. So, this is the complete

equation written in a non dimensional fashion for you okay.
(Refer Slide Time: 29:22)

So, this has this is subjected to some initial and boundary conditions a. Tau = 0 t = 0 this is

the uniform initial temperature right as the initial temperature, b. at  Nita = 1 that means at the

surface of the droplet dz by d theta = 0 okay this is also again uniform surface temperature at

any point. If we said right the surface temperature is always uniform regardless right, okay.

So, there is no theta variation, theta radiation means there is no angular variation if you take

this as your droplet so this is your theta so in this theta there is no variation right which is

make sense correct okay. And dz by d Nita sine theta d theta = Q L divided by 2 pi rs kL  T

naught, correct, okay. So, this is nothing but the total heat flux.



This has been integrated across the entire surface and we this is a symmetry line we have

done it only up to PI right because this is half the droplet this is a full droplet is a symmetrical

so from here to here is basically your Pi right. So, you have integrated, so this means that it

has been integrated across this entire surface right to give you the total heat flux right that

should be quite obvious okay.

Then there is the symmetry condition right symmetry condition is at theta = 0 and Pi d theta

by dz = 0 right, okay, got it. So, now that we have done all these things, now you should

recall  that  when Peclet  number approaches  zero that  means  the  flow velocity  within  the

droplet actually goes to zero. 

This reduces to a conduction problem approaches a conduction problem okay. And so the

equation basically gets changed, so if you write the same equation right, okay because I was

just taking off the Piclet number term okay. 
(Refer Slide Time: 32:23)

So, so at high Peclet number, this is for low Piclet number, for high Peclet number okay the

convective  transport  inside  droplet,  the  droplet  okay  if  stronger  than  thermal  diffusion

obviously that is the case right and so the isotherm basically coincide with streamlines okay.

And of course there is other limit KL or you can write it as lambda L as that approaches

infinity this is called basically the infinite conductivity model, got it, okay. So, this particular

equation there is no way that you can solve it. So, you have to solve this numerically. So, in

the next lecture what we are going to do is that we are going to see that how what are the

numerical outcomes of these processes okay.



So, numerically these are solved cannot be solved in any other way right but we have shown

that from the main governing equation what you can expect, you can  expect at your stream

lines and your isotherm should kind of match each other okay that is the case when you have

a high Peclet number.

For a low Peclet number this would be more like a diffusion based kind of a problem right.

So, these two things if you can analyze it and we do in a droplet lifetime also this can actually

change  because  Peclet  number  is  not  constant  across  the  droplet  lifetime  because  your

Reynolds number is varying outside. So, you are Reynolds number inside the droplet will

also vary right.

As a result of that your Piclet  number is also going to be vary right. So, all these things

dynamics combined we need to show see some results basically to understand what are the

physical interpretations. So these are basically solved in a numerical fashion, so numerically

these problems are basically solved because there is no other way of solving it.

And we will look at some of the numerical results in the next class. We are also going to look

at some alternative approaches are also there okay. So, those alternative approaches we will

see in the next class okay, thank you.


