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Lecture 25
Droplet liquid phase transport

Welcome to today's Lecture. So, last time what we did was that we undertook a very detailed

analysis of the gas phase and what we have done, what we are going to do now, we are going

to look at the, some, improved formulation of the gas phase as well as look at the liquid phase

recirculation and at the same time look at full fledged model of the gas phase flow field. 
(Refer Slide Time: 00:47)

So,  this  work  is  primarily  Abramzon  and  Sirignano,  this  is  professor  Bill  Sirignano,

previously of Princeton now of UC Irvine, okay. Now, what they did was that previously we

showed that there are two classes of solution, right; one we took at the shoulder, okay where

it was more like a flat plate and once we took near the equator where it was more like a

stagnation flow. 

And we say  that  the,  these  are  the  two extreme  cases,  right.  And  we did  something  in

between.  But Abramzon and Sirignano,  they did higher  work.  They took that  let  us take

general  values  of  Schmidt  number,  Lewis  number  and Prandtl  number. So,  they  did not

restrict themselves to Lewis number =1 kind of a situation. 

They also did undertake the Falkner Skan type of solution. Now, what is Falkner Skan type of

solution?  This  is  interesting.  Falkner  Skan type  of  solutions,  if  you know that  these  are



basically wedges, right which makes any arbitrary angle beta with the flow direction. If you

recall your few dynamics, okay. 

Flat plate is a case of a Falkner Skan where this angle is basically equal to 0, right. So, you

have this angle that changes from beta = 0, all the way up to beta = 180 degrees, so that is

what the Falkner skan class of solutions are, right. So, what Abramzon and Sirignano did

was, that if this is a droplet, right they took each section of the droplet to be locally like some

wedges, right, okay.

They took it locally to be some wedges and they did the solution for the entire generic profile,

got it. They did not restrict themselves to stagnation flow or a flat plate type of a flow, right.

They did something which is equivalent, right which is like a Falkner Skan like a complete

similarity  solution taking locally, okay, the locally. And they also took non-zero pressure

gradient, okay.

And of course, the standard definitions of the heat and mass transfer number the spalding heat

and mass transfer number, okay. So, so, you understand. So, they basically took this to be a

Falkner Skan type of solution, a wedge, basically took it to be like a wedge, okay. Locally

each part of the droplet is like a wedge, okay. So, they took the generic solution for the wedge

and that is how they actually solved it.

They showed that Nusselt number and we are not going to the math because it is extremely

complicated.  What are this  F and this?  We will  come a little later. So, that is a Nusselt

number then you get the corresponding Sherwood number for the mass transfer. As you can

see both of their forms a kind of very equivalent except Prandtl number is replaced by the

corresponding Schmidt number and this is a function of BM, okay. 

So, what these factors are, okay? That will come a little later, okay. And we will see what

those factors can be, okay. These are more like correction terms that you can see over here,

okay. So, using the class of solutions they found what is the Nusselt number and what is the

Sherwood number. And the important part is, of course, the evaporation rate which is m dot,

right. So, that is given as 4 pi lambda R CP log 1 plus Bh 2 1 + k by 2 Prandtl one-third

Reynolds half F  BM, okay, got it.

Now, there is one other assumption when Prandtl number is the same as Schmidt number, is

equal to 1 your heat and mass transfer numbers becomes equal to each other, right. That

means BM it becomes equal to BH, okay. 
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Otherwise, if that is not the case, then, normally your BH is given as 1 + BM to the power of

a - 1, okay. That is otherwise. That means when that condition is not valid; when Prandtl and

Schmidt number are not equal to 1, okay. Now, this a okay, CPF by CP, CPF is nothing but

the mixture specific heat or the specific heat of the gas mixture including the fuel vapour,

okay. 

1 over the Lewis number 1 + k by 2 Reynolds number to the power of half F BM is the same

F factor that we have, 1 + k by 2 Reynolds number to the power of half F Bh. That is the total

expression that we have, okay. That is that factor a, which goes and sits here, okay. Now, the

correlation of the numerical results for Falkner Skan actually shows that your FB is actually

equal to because FB is an unknown that we stated over here. 

It is about .7 log 1 + B by B, okay. Now, this class is valid usually for BH greater than equal

to 0 BM less than equal to 20 Prandtl number greater than equal to 1 and Schmidt number

less than equal to 3, okay. So, that is the thing. And this k that you see over here it k is about .

781. So, this comes from the solution of Falkner Skan. 

So, this is a really ingenious way that Sirignano and Abramzon actually used to solve it. They

took the droplet into a piecewise kind of locally to behave like a Falkner Skan type of a

solution. Locally they are like wedges right, okay. And then they use to the similarity profile,

the similarity solutions that we did in the last lecture, right.

The similarity solution, okay, f, f triple prime + f into f double prime is equal to 0, right. That

similarity kind of a solution, of course, in Falkner Skan, is a little bit different. They use that

to  find  out  expressions  for  the  Nusselt  number,  Sherwood  number  and  mass  flux,  right

because that is what you need, right for this class of solutions. 



So, using the gas phase results and using the model that there is a spherically symmetric kind

of a droplet evaporation because that was our starting point, right. And after that we included

the convection effect, within the, within the liquid. So, for this convection effect, okay using

the gas phase part of the analysis, this is what Sirignano and others actually showed. 

That this is what is actually valid, got it, okay. Now, obviously we have done this we are, we

know what is the heat and mass transfer. But there is a certain catch now, okay. People may

be interested to know what is happening, within the gas, within the liquid phase itself, right.

Why that is important, that is important in many things, okay. 

Say for example, you have a liquid, okay which you may not be just interested in that m dot,

okay,  m dot is a global parameter. You may also want to know that how the heat and mass

transfer  is  happening  within  this  droplet,  right.  That  means  what  is  the  temperature

distribution, right? What is the temperature distribution, correct and what is the flow profiles

look like, okay? 

How does it  vary during the droplet  lifetime? That means a droplet,  as we know; say it

evaporates  in  a fashion like  this,  right.  In this  portion,  is  it  diffusion or  is  it  convection

dominated, right? If the middle section is that convection only and in the later section, is it

diffusion? So, these are kind of questions, right that I am posing over here, okay which you

need to know, right.

You just cannot, you know, what is the information about m dot right the global information

okay. That of course, does not tell you that how, for example the isothermal contours look

like, the isotherms look like we did the droplet. That means if I take a droplet like this and let

us take half of the droplet because it is axisymmetric in a way, right across that access, okay.

Now, how would the contour actually look like? Whether it will be like nice round like this?

Signifying  that  there  is  a  pure  diffusion  dominated  thing?  That  means  the  isotherms are

basically circles, concentric circles. Is it going to be like this or is it going to be something

else, okay? We do not know or is it going to resemble the flow profile, right, okay.

So, that kind of a thing you can only analyze unless after you know that what is happening in

the liquid phase, correct.
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So, the liquid phase analysis, we will go, we will do in a certain way that first and foremost

we will say that the liquid phase, we will just introduce a problem here. And then we will take

it up when we do the full fledge droplet modelling, okay because that way it will be more

clear. So, in the liquid phase what we have is that normally there would be a jump in the

shear stress, right across the interface.

Why that thing happens? Because there is a gradient in surface tension, usually that was our

original  generalized  form  that  we  wrote  when  we  actually  devised  the  mathematical

equations, right. So, here, of course, assume that there is no surface tension gradient. There is

no surface tension gradient. 

Now, that is a valid assumption, if there is no temperature or composition variation across the

surface  which  is  what  we  have  assumed  in  the  first  place,  okay.  So,  temperature  and

composition,  composition  are  uniform,  uniform  along  the  droplet  surface,  is  it  a  good

assumption? We will see, got it. 

So,  there is  no jump in shear  stress,  got  it.  There is  no jumping shear  stress  across  the

interface, okay. That is what we need, okay. And so the shear stress is basically continuous or

whatever sheared that you write, coming from the liquid phase will be same as a shear that

you have from the gas will, okay across the interface.

That is going to be valid like regardless. Now, also another thing that we mentioned earlier

and I want to reiterate. Now, I will continue to reiterate that the Reynolds number in the

liquid phase that is created, it is mainly due to viscous shear, right. It is due to the friction

between the droplet and the flow, right. 



And as we know that this is a function of Rho L, your Umax, that is a maximum velocity of

the, of the liquid phase and mu l which is basically the liquid phase viscosity. This should be

much, much greater; sorry it should not be much, much greater always. Let us see. So, this

will be like greater than equal to the Reynolds number of the gas phase.

 This we already established because your Rho l is about thousand times higher though your

U max is quite a bit low, okay. Here, U max is one order lower, but your Rho l is several

times higher, right. So, that makes it that this Reynolds number that is actually introduced

into the liquid phase is not a low quantity.

And the third thing that we said is the Peclet number is high. What happens when Peclet

number is high? When Peclet number is high, Peclet number is high because Peclet number is

what? the Peclet number is Reynolds number of the liquid phase into Prandtl number of the

liquid phase, right. So, Prandtl number of any liquid is usually high, right. 

It is usually greater than 10 in many of the cases, okay for what water is about 6, right. So

that Prandtl number is usually a high enough quantity. So, the Peclet number is usually high.

Sometimes it is greater than equal to 100, okay in many of the cases that we are going to

consider over here.

Now, when  Peclet  number  is  that  high  that  implies  okay  that  convection  is  much  more

dominant, right than the diffusion essentially that is what the Peclet number significant is,

right.  So,  the  heat  and  mass  transport  is  different  from the  vorticity  or  the  momentum

transport. 

Or in other words, so that is what we are going to see in the later part of the course that

momentum transport or vorticity transport happens very quickly, right, okay. So, that is what

we are going to see in the next part of the author of the lecture.
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Now, in order to solve this liquid phase that usually the hydrodynamics is solved by writing

the vorticity transport equation. That is the convective derivative. That is the diffusional term,

right. This normally will be equal to 0 for 2D planar flow. That is because your vorticity is

pointing in a plane, okay away. It is out of plane component, right, okay; whereas your U,

okay U is basically the in-plane component, okay.

So, the dot product  between the two is  going to give you a zero quantity, okay. But the

viscous term obviously will be retained. So, that is the strictly the vorticity transport, okay.

Now, here what we say is that we assume a quasi steady hydrodynamic behaviour, okay. So,

that means, this essentially means that the flow is established, established in very short time,

very short time compared to heating or mixing, okay.

And the hydrodynamics and we will see why this happens a little later. And hydrodynamics

instantaneously adjusts, okay adjust to changes in droplet diameter, got it.  So, the flow is

established in very short time compared to heating or mixing. That is once again a quasi-

steady kind of thing. That means whatever happens the flow adjusts the fastest, right and the

hydrodynamics instantly adjust to the change in droplet diameter.

That  means  if  the  diameter,  droplet  diameter  is  actually  shrinking,  right.  So,  the

hydrodynamics if it had just instantaneously that means we can also take it to be quasi steady

in terms of the droplet itself correct, okay. Now, usually for this of the equation that you have

over here that you have over there, right, okay.

The Hill’s Spherical  Vortex which we mentioned very briefly  earlier, the Hill’s Spherical

Vortex is a valid solution, okay in the inviscid limit. This is valid in the inviscid limit which is



true that  is  because your  liquid  boundary layer  is  very thin,  okay. It  is  restricted  mainly

towards the droplet surface, right. And we already showed if you recall your diagram.
(Refer Slide Time: 19:03)

 Let us pull that up if you look at, if you recall this particular slide, okay you will find that the

liquid boundary layer is restricted to a very small region correct okay. Let us spend one or

two minutes from this so, if you recall this particular expression and it is useful, okay. You

will find that most of these things, okay. 

This, this core that you see over here, okay this toroidal core, right that is basically rotational;

but virtually shear free,  okay. So, it  is basically like an inviscid core,  all  right where the

boundary  layer  is  restricted  only  in  these  regions,  got  it,  okay. So that  is  what  the  Hill

Spherical Vortex is all about. 

So, keeping that in mind, so the vortex is a valid solution in the inviscid limit okay. So, now a

solution of this kind is usually written as: 
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Let us go to the next page before we write it, okay. So, Omega is basically given as 5 A tilde r

sine theta. We will come across what that exactly means here, A tilde essentially means U

max by R, okay and you can also write the same thing, okay. So, that, that is what the Omega

is, okay. And you can also define like a stream function which will be given as minus half A

tilde r squared capital R square - r square.

Capital R square being the droplet radius because this is equal to minus half A prime square R

squared - r tilde squared + z square. Now this r tilde square and basically r square sine square

theta, okay got it. So, that is the stream function and the corresponding vorticity. One can also

define, so define the boundary layer as Phi = 8 Psi A tilde r to the power of 4, s = r by R. So,

this is just a coordinate transform. 

And this is also written as 4 pi s square 1 minus s square sine square theta. That is also a way

of writing it. So, this is subjected to the condition that Phi = 1 when S = 1. That is at the

interface. S =1 is basically the interface, okay. And when theta = 0 and theta = PI that means

the center of the internal wake, okay. That is also valid, the same thing. 

And Phi = 0 at vortex center which is basically theta = PI by 2 = 1 over root over 2, okay.

Now you have to, do not have to understand the math altogether. What it essentially means

that we have used the Hill’s Spherical Vortex and we will do a little bit of more discussion on

this. Hill’s Spherical Vortex is a reasonable assumption, okay in the inviscid limit.

It satisfies also the interface conditions and we can also define the boundary layer using this

expression over here, right. And using a combination of these two, we can define that what is

going  on inside  the  droplet.  This  solution  is  valid  for  high  Reynolds  number  remaining

behaviour, okay; the viscous terms are obviously neglected.



So, that the inviscid solution for the internal liquid flow, essentially, so, this is valid we can

say for high Re, essentially. For low Re this is, there is another solution that is given by

Hadamard, okay which is also a quasi steady solution given by Hadamard, okay. The, there

also the inertial  terms in the liquid and the gas is basically neglected because it is a low

Reynolds number solution.

Snd the linear equations are solved by separation of variable and the Hills spherical vortex

even applies there got it.  So,  in the Hadamard solution what did they assume is that the

inertial terms neglected; terms are neglected, okay. Then, separation of variables which is so

b, if sob is used, used to solve the equations. 

The linear equations basically it is linearized because convection term is the only non, non-

medium term to solve the linear equations, okay. And Hill spherical vortex is still valid. Hill

Spherical vortex applies, okay though the external flow solution is very different, okay in

those cases, okay.

So, for high Reynolds number case, you have this solution. For low Reynolds number case.

What we have not covered it Hadamard gave a solution which is essentially uses the same

Hill  Spherical  Vortex  but  neglecting  the  inertial  terms,  okay. So,  that  is  what  the  main

framework of this incident is that we are going to solve by using the Hill Spherical Vortex

solution, right.

And that is normally valid for high Reynolds number in the inviscid limit, got it, okay. So,

now, let us in the next lecture what we are going to do is that we are going to look at the full

fledged droplet vaporization model where things will become a little bit more clear. And we

will use some of these Hills spherical vortex and other notional concepts and find out what is

going to happen in those cases, okay, okay, so in the next class.


