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So, in the last lecture, we, we showed that the Liquid phase Reynolds number is, it can almost

be as large as a Gas phase Reynolds number, right. So, the way of stating this is that, what

will be the nature of the liquid phase boundary layer.  Remember that region 3, the region 3

that we mentioned within the droplet.
(Refer Slide Time: 00:40)

Another number that is a practical relevance is the piclet line number, piclet number is what u

liquid into d by alpha. This d can be the droplet diameter can be the radius of the droplet also

this Peclet number is normally much, much greater than 1, okay. In fact, this is of the order of

thousand actually, the liquid Peclet number, okay. 

And the  Prandtl  number of the normal  liquids  are  of the  order 10.  Usually  they are not

allowed at 1. So, in the liquid phase, what you expect? In a liquid phase, you expect to see a

thin viscous layer, right and you can get thinner thermal layer. So, thin viscous layer and

thinner thermal layer.

Now, the Peclet number as I said is of the order of 1000, okay. So, the liquid flow velocity

plays a major role and the Prandtl number is of the order of 10, okay. So, thinner thermal

layer comes because of this Prandtl number, okay and the thin viscous layer comes because

the Peclet number value is high, okay.



So that is the liquid phase description, right. So, it will also have a boundary layer that is the

bottom line. It will also have a boundary layer. In fact, in most cases, the thermal boundary

layer is much, much thinner, okay. Now, let us now return to the two Corollary or Postulate

that we mentioned. One was that there is no torque, right; the other is that the friction force is

of the order of 1 over the Reynolds number, right.

So, these were the two postulates, okay. So, in a droplet normally you expect a balance to

happen between inertial force and friction forces, right. In a droplet, one normally expect,

expects  a  balance  between  friction  and  inertia,  right.  So,  from  an  order  of  magnitude

perspective, this is your inertia. This is your friction force, which can be written like this,

right. Delta is nothing but the gas phase boundary layer thickness, right.

And if you have done your fluid mechanics course, you will find that Delta is always scales

as  R and Reynolds  number to  the power of  half,  right.  This  is  from the boundary layer

scaling. If you recall, this comes from delta by R scales as Reynolds number to the power of

half. If you have done your flat plate boundary layer, you will see that that is the expression

that we normally use, right okay.

So, using that what you will see here is Rho u square scales as Tau R by delta. That is Tau

Reynolds number to the power of half, right okay. That is what you are going to get. So,

basically it is a combination of inertia and the corresponding, the balance between inertia and

friction, right. Now, whenever as I said that this asymmetry normally happens due to some

fluctuation, right. 
(Refer Slide Time: 04:14)

So, let us go to the next page and write. When there is a fluctuation of some kind, okay this

axis symmetry can be lost. And the difference in velocity and stress can be found out. The



axis  symmetry  is  usually  lost,  can  be  lost,  okay.  So,  what  you  find  is  that  if  you  just

differentiate  the  previous  form that  we had,  you  will  find  Rho u  into  delta  u  scales  as

Reynolds number to the power of half into delta Tau, right, okay.

So, this is just a differential right. Now, delta u, what is delta u?  Delta u can be written as v

by Nita and we will see what those v and Nita are.  Nita is basically the same as the droplet

diameter.  So,  this  essentially  means  that  the  fluctuation,  why  should  the  fluctuation  in

velocity happen? This can happen because of turbulent Eddy's, right of different sizes. 

Now, the turbulent Eddy of the pertinent size in this particular application of the size of the

droplet diameter, right because that is what the droplet can see, right. So, it is a scale thing. It

is a scale issue. So, this is basically nothing but the size of the Eddy size of the turbulent

Eddy, okay. And v is the corresponding velocity of that ad, that Eddy, so to say, okay. So, that

is the fluctuating Eddy, okay. 

This is normally this, this assumes that this Eddy lies in the Kolmogorov scale. We are not

going to go into deep into Kolmogorov scale as of now, okay. So, this is the scale, if this is

the smallest scale in the turbulence spectrum, okay. So, in the Kolmogorov scale, okay this

eddy size is the same as a droplet size and the velocity of that Eddy is given by that v, okay.

And that is the expression that we have. 

Now, the friction force, what can we write about friction force? Friction force scales as Tau

into R square, right, is not that so? It is a torque into the corresponding R square. So, the

change in the friction force is basically given by R square into delta Tau. Once again it is a

simple differential, right. So, the torque on the droplet, what will be the torque value on the

droplet?

The torque value on the droplet is basically R into this delta F, right the change in friction.

That is basically given as R cube into delta Tau just by substituting the expression for friction,

right. Now, already this delta Tau expression is linked here, as we know, right. So, this Tau is

therefore given as Rho u square or Rho uv, whatever you call it. Reynolds number to the

power of half into R square, okay, got it, okay.

So, now the moment of inertia is the torque, right, moment of inertia of a droplet. Droplet is

given as I is Rho l into R to the power of 5, okay. So, the angular acceleration that happens is

basically given as T by I which is also given as Rho by Rho l. This you can write it if you

want as u,v  that will be the correct way of writing it, okay.



So, this is Rho by Rho l into u into Re, Reynolds number to the power of minus half R, got it.

So, that is the angular acceleration, okay. So, the angular acceleration can also be therefore

written as Rho by Rho l divided by Reynolds number to the power of -3 by 2 into 1 by some

T residence times square.

Now this T residence time is nothing but the time required by a gas parcel to pass the droplet,

okay and this residence time as you can rightly guess it can be given as R by u, R being the

relevant  non-dimensional,  R  being  the  relevant  diameter,  right.  So,  with  u  that  is  the

traversing time that thing actually takes, okay. 

So, the Tau residence time is this. So, the angular acceleration that is created is basically

equal to 1 over the Tau residence time, okay.
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Now, this Omega, the angular acceleration is roughly constant, right. So, we define time for

one rotation as t rot, okay. This implies t rot by t res scales as Rho l by Rho Reynolds number

to the power of three fourth, right. Normally this will be greater than 1 why because Rho l is

much, much greater than Rho, right. And Reynolds number we have said just now, that, it is

of the order of 100, right for this kind of a situation.

So, naturally the rotation time and the residence time, this is much, much greater than 1,

right. So, this would imply that the t rotation is much, much greater than the t residence for

most of the cases because this is of the order of thousands. We can estimate this in fact at t rot

by t res is almost equal 1000 and if the Reynolds number is 100. So, it is of the hundred to the

power of three fourth, right.



So, it will be like several orders higher, okay. We would expect this to be several order higher

than this right, okay so, at least 3 to 4 orders higher, right. So the t rotation time is much,

much longer than the t residence time which justifies our assumption that we say it later. If

the droplet rotates, it rotates so slowly, right that many gas parcels actually passes over it,

okay.

So, there is no asymmetry as such, okay because this is a very slow process, okay. On the

other hand, we also defined that let us look at the nature of the friction force. So, the friction

force delta F by F basically scales as 2 by Re, right. So, this also shows that the delta F is

basically of the order of 1 over Re. So, if Re is very large, the change in friction force is very

small. Percentage change is very small, because Re is of the order of 100, right.

So, delta F by F should be like on the order of 50. That is the change in friction force is

roughly 50 times lower than the value of friction. So, there is what we can say, there is a

small  change in  friction,  right  and long rotation  time.  So,  you have  proved through our

scaling argument that that is true. So, the rotation or asymmetric circulation is not significant

for droplets with large Reynolds number values, okay.

So, whatever we, we portrayed in that, PPT, where we showed that what are the regimes

within  the  droplet,  that  is  still  valid.  We can take  it  to  be  axis  symmetric  nice  and axis

symmetric, okay. So, that would be the first thing, okay and there is no rotational effect. So,

we can safely do the problem as if  the flow is  axisymmetric  and there are no rotational

effects, got it, okay.
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So, now that we have done it now let us look at the first level of analysis that means we

would now start to look at approximate analysis of the gas phase boundary layer, okay, Gas



phase boundary layer. So, we are first going to analyze the gas phase boundary layer because

that is step number one. We have to also come and do the liquid phase and analysis because

this is a full convective model that we are looking at, right.

So, the first assumption is basically that your Reynolds number of the droplet is greater than

one which is obvious because that is why that is when the convection becomes an important

part of the whole thing. And we are assuming that thin boundary layer; thin boundary layer

exists on droplet surface. This is already established but we are putting this as an assumption.

We are going to neglect viscous dissipation and we are going to assume Prandtl number equal

to  Schmidt  number is  equal  to  1,  okay, xy in  our  expression  means,  x  means a  tangent

tangential  to  the droplet  surface  to  droplet  surface,  okay and y means normal  to  droplet

surface, got it, okay. And r designates the distance from axis of symmetry, okay so r = R

basically means the droplet surface, okay. 

So, these are that for the approximate analysis of the gas phase boundary layer. These are the

few assumptions not assumptions per se, okay. Or they are very valid, okay. So, based on this,

we can start working on the problem. And here what we will do is that we will take abundant

use of the existing literature that is available on gas phase boundary layers say, a flat plate.

Say, for example, a droplet can be now analyzed in like a flat plate boundary layer or like a

stagnation flow. Stagnation flow is like this, as you know, right. It is also called the Hyman’s

flow. And there is the flat plate boundary layer. Combining these two and also if you know

the Falkner Skan type of solutions that means.

Any angle if you have a surface inclined at any particular angle, there is a class of solutions

that  are  available  which  are  called  the  Falkner  Skan,  okay. So,  that  looks  like  a  balsier

solution but it is applicable for any level of inclination. Last year solution is only available

for a flat plate, right with zero pressure gradient right.

 In the case of Hyman’s flow it is different and this Falkner’s Skan basically includes these

two, as two special cases, okay. So, Falkner Skan is applicable for any wedge, right whatever

the magnitude of that wedge is right. So, when the wedge becomes 90 degree it becomes

basically what we call a Hyman’s or a stagnation flow. 

When it becomes 0 it becomes like a flat plate boundary layer, right. So, our droplet basically

what we are trying to say over here it can be actually resolved, you know in pieces and



locally it can be made to approach a situation like this. One way it can be like a flat plate; one

way it can be like a stagnation point and in between the curvature changes, right.

So, it is almost like these wedges if you take this section out you will find that is like a

wedge, right. Like a wedge of a certain angle, got it. So, we can use locally, Falkner Skan

class of solutions to solve the boundary layer, right because it is a droplet with, with pieces,

right, in pieces, in locally, right.

It behaves like a Falkner scan class of solutions, okay. And there are extremes like this and

this  where  it  behaves  like  a  normal  flat  plate  boundary  layer  or  like  a  stagnation  flow

solution, okay.
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So, let us write the equations which will be useful. So, continuity, Good part is that we do not

have to solve all of them but the math we are not going to work out the math like that. But we

are just going to pose the problem and we have already explained how the problem can be

solved. So, it requires that Falkner Skan type of solution. 

So,  that  is  the  continuity  equation  X  momentum  equation.  And  you  will  find  a  lot  of

similarity with your flat plate boundary layer. We will see, say, what u e is, just hold on for a

second, till we establish this equation. Where do you recall that? This is the, this comes from

the Euler's equation in outside the boundary layer, right. 

So, ue is basically nothing but the potential flow, flow velocity outside the boundary layer.

This we already knew, right from your, if you recall your classes where, we actually did this

Falkner’s scan type of solutions, or whatever courses that you may have taken, this is the

solution.



This is basically comes from the Euler's equation which basically relates the pressure gradient

with the velocity, right. There is Euler's equation. If you look at the X momentum equation

carefully, you will find that there are variations of u, with respect to x and y. There is an

additional  term  that  we  are  carrying  over  here  which  solely  comes;  because  there  is  a

variation of the free stream velocity or basically the variation in the velocity ue.

That is the velocity outside the boundary layer with respect to x. There is a spatial variation,

right. Once it is a spatial variation, this term has to be included because its origination this is

also true, in the case of your Falkner Skan and other things, okay. So, that is very important,

okay and what about the y momentum equation?

Now, the y momentum equation,  the pressure gradients  in  the Y Direction is,  negligible.

Gradients in y direction is negligible, right. So, this particular term, on the other hand, this

term that we have mentioned, okay this has got a peculiar feature. For example, at the edge of

the boundary layer this term becomes equal to 0 right because of the edge of the boundary

layer it becomes equal to 0. It is also negligible at the droplet surface.

At droplet surface it is negligible, okay. Why it is negligible at the droplet surface because the

transverse variation of the dynamic pressure is small at the droplet surface. So, this term also

have got a particular feature that feature being that it is negligible at the droplet surface and at

the edge of the boundary layer it becomes equal to zero, okay.

That is because these two terms becomes equal to zero to each other. So, they become one

right. So, they become equal to zero, okay. This term clearly drops out, okay. 
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So, based on that so that is the part, so there are two special cases, of course, as you can see

that it is tough to solve it, okay, holistically. So, we will take 2 cases needs to be taken. First

one is basically the stagnation point flow when r = x and ue = ax you already know the

stagnation flow. If not just do a very quick recap of Panton or S M White's fluid mechanics

book for you can actually read the part on the viscous flow. 

And there will be flows like stagnation point flow. Stagnation point flow is very common. So,

one is the stagnation point flow and you can guess which part is a stagnation point flow. The

other one is the shoulder region of the droplet, right.  There theta if you consider theta from

the droplet equator, that is at 90 degrees, right. 

So, theta at 90 degrees when r =R ue is basically 3 by 2 u infinity, okay. So, that is the

shoulder region where the pressure gradient in the shoulder region, the pressure gradient is

basically equal to 0, okay. That is exactly like a flat plate. So, the flow locally behaves like a

flat plate. And in the flat plate as you know udu dx is basically equal to 0, right. That is a flat

plate boundary layer, right.

In because, there is no pressure gradient there is zero pressure gradient inside a flat plate

boundary layer, right. This you know from your Blasier solution.  In fact that is what the

Blasier solution is all about understood. So, whatever it is, the well-known similarity solution

and this we will just use the Blasier’s form and you will see that how powerful this thing

hard.

The idea is how we can actually take a solution from a very different perspective, you know,

and apply it in a very different perspective also and still get results which are physically very

meaningful, insightful results. And that is the beauty of doing fluid mechanics, okay. So, the

similarity  solution becomes ue x and this  is f  prime nita,  we, where you know that it  is

basically ue into f prime nita.

Where  you  know  that  f  nita  satisfies  Blasier’s  equation,  okay.  It  satisfies  the  Blasier’s

equation and so when you write it this is basically f triple prime plus f into f double prime is

equal to 0. Do you recall the form of this equation, okay? That is the Blasier’s flat plate

solution, right, okay. And nita obviously, we have to define what is nita? 

That is ru e do not worry about that sign that I have mentioned here. That is basically the

dummy variable, okay. So, that is how Nita is actually defined, right. If you do not even get,

you just have to recap your flat plate. Just go and recap that, okay. If you are not getting the

feel of this similarity solution, okay. 



But this is basically a similarity solution and you know what similarity transformations are.

We are not going to spend time on that. If you have, if you have learnt your fluid mechanics

you already know that. What similarity transformation exactly means, okay.
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So, the vaporization rate, rate per unit area, area is given as Rho vs as - A f 0, where this A is

2k Rho e ue to the power of half for stagnation flow. And this is equal to Rho e mu e sorry ue

by 2  okay  for  the  shoulder  region,  got  it,  okay. That  is  the  vaporization  rate.  Now, the

boundary conditions of course if you look at the nature of this equation, f double prime f f

double prime =0. 

How many boundary conditions it needs? It requires three, right because the triple derivative

that we are talking about. So, the boundary condition, two boundary conditions are readily

available, f prime 0 = us by ue. That is at the surface f prime infinity is basically equal to 1.

This is basically the free stream. These are the, are the applied at the two boundary layer

interfaces, right.

And this basically comes from the continuity of tangential velocity at the droplet surface; of

tangential velocity at droplet interface, got it, okay. So, these two boundary conditions as you

can  readily  see  one  is  applicable  for  the  free  stream  when  the  flow  where  basically  u

approaches  the  free stream,  the other  one,  when it  is  the tangential  velocity  were at  the

droplet interface.

In most of the Blasier solution, you will find that that will be equal to the 0 because there will

be a no slip, right. But here that no slip is not valid, it is no slip, but it is not equal to 0, okay



because there has to be a continuity of that tangenial velocity across the droplet interface.

And that is very important, okay. 

Now, we  need  basically  a  third  boundary  condition,  right.  Third  boundary  condition  is

needed. So, in order to get that, let us write the other, other boundary conditions for energy. 
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Say, for example, I have not written the energy equation because we have already written it

earlier for the gas phase, okay. So, once again, if you recall what the energy equation was, it

is g at the gas interface, gas side of the interface. Then this is basically on the liquid side of

the interface, right plus there was this Rho vs which was basically the mass flux into the

latent heat. Do you recall?

That was the latent heat, right and this sometimes we wrote it as Rho vs into L effective is

no't that so, right. And then we had a lot of arguments regarding the nature of this, this is

basically that conduction heat flux, right, is not that so. It is the q dot that we mentioned

earlier right, okay. So, this is basically the same as radically symmetric droplet. This is the

same as radically symmetric droplet, right.

For species, similar thing once again, we have written it already for the species earlier. We are

not writing it once again. Rho vs YFs - Rho D YF by dy, right. Sorry, this is not okay and

then we have the definition of B is equal to h infinity - hs by l effective right okay. So, using

all these things and we are not going to show how because it is very complicated. And you

also do not have to do it, okay. 

Using all these cases we can now device the third boundary condition that is needed and the

third boundary condition is basically a little bit complicated to look at. Do not bother about



the math because that is not important over here, okay. It will take a lot of time for you if we

have to work out this, okay.

That is given as 1 over B right, so that is the third boundary condition, okay which combines

the energy, species and everything. And uses the definition of B and combines weekend we

can have this particular form, right. And let us define the Nusselt number also so the Nusselt

number is given as this by B Reynolds number to the power of half. Now, this k is  not the

thermal conductivity, k is basically a greater than 0, non-dimensional coefficient.

Non-dimensional coefficient, the order is unity of the order one, okay and it is determined

when the heat flux is averaged across the droplet surface. This is averaged across the whole

droplet surface, right. And this k value normally nominally is given as something like point 5

5 2 into root over 2 okay about 0.7 81 or something like that, it comes, okay. 
Similarly, one can write m dot global that is the global vaporization rate, 2 Phi k mu e r f 0

into Reynolds number to the power of half, got it, okay. So, that is the expression. 
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So, let me write it in a fresh way so that you do not have to global and basically 2 phi k. This

is not the same k as thermal conductivity, Reynolds number to the power of half, okay. When

this k is greater than zero, normally k is about .78 something like that, okay and the Nusselt

number so that you can use it if given has - f0 by B to Reynolds number to the power of half.

These are the two main actors that even industry people are going to use this again and again,

right, okay. So, this is how we have solved it, just doing a bit of a recap. We divided the

droplet  into  several  pieces,  right  and  we  consider  the  stagnation  flow and  the  flat  plate

boundary layer. So, you use the similarity transformation to basically link the velocity and

other things. 



And there we establish three boundary conditions, the last boundary conditions comes from

the energy and the species combining it. And then, we have not shown the math that how

exactly the steps are. We have devised that there are two quantities of importance one is the

nusselt number; which is for the heat transfer coefficient and the other one is basically the

global evaporation rate. 

Both are solved in terms of this similarity variable of the Blasier solution, right, okay. So,

with this, we have shown that how one of the model would actually work, okay. But there is

another type of model which was done by Sirignano. No, this does not involve the Falkner

Skan by the way. 

So,  what  Sirignano  and  Abramson  actually  did  was  that  they  actually  incorporated  the

Falkner Skan class of solutions and devise a more rigorous approach to do this, okay, do this

was not rigorous. This is like ad hoc it just took like the shoulder region and that the two

extremists is essentially, right; shoulder region and the stagnation region, okay.

And so, you can assume that all the other solutions will lie somewhere in between that was

the whole argument, right. So, but, Sirignano and Abramson did basically the Falkner Skan

class of solutions using non zero pressure gradient, okay. And in the next lecture or in the

next class, we will find out what that exactly is okay, thanks.


