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So, we can write all this equations in the dimensionless form. Let us form, okay. So, you can

write like for example, M that is the mass can be written as m dot by a lambda by Cp. That is

one term. This is the dimensionless mass flux you can normalize r by a, okay. So, I mean

these are the typical non-dimensional parameters. 

You define  something  called  a  Louis  number which  is  basically  nothing but  the  thermal

diffusivity divided by the mass diffusivity, right. So, that is the Louis number. And this is

very important, specially, in the case of combustion and other related things. If you do all the

transformations, we can write the non-dimensional equations as o v r square, M by r square,

dYF by dr, -L eF -1 r square, d = 0, M by r square dT by dr - 1 by r square, right okay.

 So,  these  are  basically  the  dimensionless  versions  of  the  whole  thing.  The  temperature

similarly can be normalized by T infinity and things like that, okay. These are not important

but you can.  So, it  is  basically  T is normalized by T infinity  Rho is  normalized by Rho

infinity, okay. So, that will take care of the things, okay. 
So, at r = 1, that means non dimensional r = 1, okay. We could have written it as r bar also

does not really matter. The same boundary conditions now will translate to something like

this. This is where the Louis number comes in as you can see, right. And dT by dr = MLv T =

Ts and where your Lv is basically Qv by Cp T infinity, okay. 



CTp infinity  is  basically  nothing  but  a  h  infinity, okay. So,  these  are  some of  the  basic

quantities that we have written, okay. Now, let us look at. So, this actually shows that what

happens at the interface in terms of the normalized quantity.
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Now for pure evaporation, if you solve for YF, it is basically 1 - m by r, okay. And T = Ts -

Lv + Lv  M = ln 1 + 1 – Ts by Lv, okay, so, this is the pure evaporation. In dimensional form

you can just work out the maths because there is nothing more to do apart from algebra, okay.

In the dimensional form, your m dot will be given by 4 Pi a lambda by Cp, okay.

So, here this particular factor, we define a factor called Bv or Bh, whatever you call it, CP -T

infinity - TB by QV. This is called the spalding heat transfer number, got it. So, the mass flux

is basically given by this into this, right. And this Bh is basically called the spalding heat

transfer number, okay. So, m dot in that compact notation can be written as a lambda divided

by Cp ln 1 + Bh, okay.

In some cases which will be written as Bv does not really matter. It is the same thing, okay.

So, basically what does this represent? The Bh, the Bh basically represents the impetus for

heat transfer, in this case divided by, the resistance to transfer, okay. So, it is the impetus

versus the resistance to transfer, okay. In most of the cases Bh will be greater than 0 and T

infinity will be greater than TB. That is the surface temperature, right.

That will be always be the case because it's a evaporation situation, right. Now, how do you

go from the d square law from here? We have already established this expression, right. This



is the; using the Spalding heat transfer number. Now, how to calculate that how the droplet

will actually reduce in size? That is the most pertinent question that we have. 
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Now, m dot is also given by three-fourths a cube Rho l, which is basically, basically given on

the droplet size, right. Is not that so? It is given on the droplet size. Now, if you take d a

square by dt okay, that will be given by 2 lambda by Cp by Rho l into ln 1 + Bh, right,

because this m dot is the same as the m dot that we established here, right. So, what can be

done is that you actually differentiate this but retain the a square term right, okay. 

And then, you show that this is equivalent to that. Now, this is actually equal to - Kv, okay,

whatever. That is just a constant that we have done over here. So, basically if we integrate

this, this will become a square equal to a naught square minus Kv t, right. This is nothing but

the d square law, got it, okay because it is a square given as the initial diameter reduces at a

rate, okay which is basically linear, right.

So, you can also normalize this a square by a naught square to 1 - Kv  a naught square into t,

right. So, this will show a dk characteristic like this, right. So, it will start with when a naught

is the same as a one, right, okay. So, it will start. So, the time axis will start from there, right.

And you can see it is a gradual reduction of the slope which is expected, right because a

decreases with time. 

So, this is basically the d square law that we have derived out of this entire exercise, right. So,

this square, now, there is another thing to this d square law we have determined it based on

the heat transfer spalding heat transfer number. There is also spalding mass transfer number

which is nothing but at the surface this is a far-field 1 minus the surface, okay. 



So, this as you know, is a function of the P saturation pressure,  right which in turn is  a

function of that P saturation pressure, right because P saturation and T saturation are related

to each other, right. So, the spalding mass transfer number is given in terms of this. Ideally B

m should be equal to Bh, okay. 

You can derive this d square law from either of the two situations, okay. And this should be

the, this should be the equivalent to each other, okay. So, this is mass transform if they are not

equivalent the lower of the two basically actually governs the process, okay. So, it is either

called mass transfer limited or heat transfer limited, okay. 

So, there are basically two things, okay. Mass transfer limited or heat transfer limited, okay.

So, these are the two cases that you have over here, okay. So, now that we have done all these

situations, okay. 
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Now, let us look at, the first model is done that is the d square law part is done, okay. Now, let

us look at the more the next phase of the models, right. So, because as I say d square law is

limited we already established from the presentation what the d square law entails,  right.

Now, under certain cases, of course, in normal cases, okay what will happen is that your

droplet, you cannot actually neglect like this. 

You have to take into account the gradient inside the droplet, okay. Now, normal case is what

we wrote was simple, right. Normal cases, just now, we wrote it. So, lambda a square or r

square whatever you call it, right. Sirignano know uses capital R. So, you can stick to if you

are reading Sirignano’s book. Anyway does not really matter. 



So, one part is basically your m dot by 4 pi into the corresponding Qv. Sirignano writes it as

L. That is a latent heat it does not really matter either way. And we have already seen that a q

l by 4 pi. This is basically the heat conducted; okay which in Matalon's notation, we combine

these two, okay.

 And say it that this is Qv effective. Sirignano writes it as L effective essentially means the

same thing,  okay. These two are basically  the same, okay. So, you really  do not need to

bother about the notation. But whatever location you use, you use it consistently, okay. Now,

we already  know that  this  particular  term and  we did  something  to  indicate  that  this  is

basically nothing but lambda l into r square into dt by dr coming from the liquid side. 

The liquid side of the interface we can write it as LS, okay. Or you can write it as a minus,

okay. Anyway once again does not really matter, okay. Now, normally, if you cannot neglect

this, last time what we did was that, we say that this is equivalent to dt by the time, the time

dependence of temperature. 

And then, we say that we can be neglected, if it is in a wet bulb limit, this can be neglected.

And all those things, we said, but, we are taking a case in which all these things cannot be

neglected. Let us assume the more generic case like that, okay. So, so, in that particular case,

if you look at, this particular expression once again over here, okay. 

So, this shows that is in the liquid side of the interface. We normally do not know what is this

conducted heat flux value is going to be? What is its value, okay? It is nominally unknown,

okay. The droplet surface temperature that means either TB or TS, okay. Once again is a

notation  thing  which is  basically  nothing but  the  surface  temperature,  okay. That  is  also

unknown, okay. 

So, someone needs to solve the heat diffusion equation within the droplet to know about all

these  answers,  right.  Otherwise  your  surface  temperature  is  unknown;  your  heat  flux  is

unknown; your gradient is also unknown. So, there are many unknowns which you need to

solve, okay. 

Now, before we go this, we can establish a few things over here, okay that will help us a few

quantities, okay. Some of the quantities we already knew. Now, for unitary Louis number that

is Le = 1, right. Louis number means you are basically thermal diffusivity and your mass

diffusivity at the same, they are the same value, right basically Rho d = lambda by Cp, okay. 



Now, m dot if you recall the expression for m dot, okay log of 1 + B, right. That is what we

wrote in the last one, right. Now, if your Rho d is constant which in normal cases it is, right.

We already established this. So, I am just reiterating the same. This we already established,

right. In just in the two slides back in the last lecture, we established this particular thing,

right.

And we are established to the two mass transfer quantities, right, okay. Now, based on this,

we can also define the Nusselt number which is basically 2 r dt by dr at s divided by T

infinity - TS. Similarly, you can define something like called the Sherwood number, okay

which is basically the mass transfer equivalent YFs - YFs infinity, dYF by dr at s. 

So, the Nusselt number is basically Nusselt number and Sherwood number is taken like that,

got it. These are definition. This is no mathematics, okay. We have just defined the, what is

the Sherwood number is going to be like. This will be useful quantity but as we will see later,

okay. 
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Now, if  we  do  now  only  the  liquid  phase  under  liquid  phase  analysis  because  that  is

something that we never did. And that is what we promised, right. The liquid phase analysis,

this is basically to link the interface temperature to the liquid heating rate, okay. How to link

interface temperature to liquid heating rate? Okay

So, okay, so, we have to somehow link the two. So, the boundary conditions and you can

show this, got it. That is also equal to log 1 + B  by B, L is basically a latent heat, got it. And

the symmetry condition prevails at r = 0 that means your dt by dr at r = 0 is 0, right, you got

it. So, that is the basic set of equations, okay. And the initial temperature of the droplet, you

can say, initial temperature was uniform.



And it was T = T naught, okay. So, the time derivative is considered in the liquid phase but in

the sorry the time derivative is considered in the liquid phase but not in the gas phase. And

that is because the gas phase, as we already know, we have already established that the gas

phase does not require, right the gas phase does not require any such thing because it is fast,

okay.

I am sorry. And so it, so that is a question, okay. So, that is a, this is basically a transient heat

conduction equation, okay. So that we had done with that so that is the symmetric condition,

okay. So, how about estimating? So, so you need to solve this equation, okay. You need to

basically solve this equation to get an idea of what will be the interface temperature and how

it is linked with the liquid heating rate. 

Now, let us look at, okay the question that I am going to pose over here is that, we know what

is the ratio of the, important question to know is that what is the ratio of the liquid heating

time to the overall lifetime of the droplet, because if the liquid heating time is very small,

then, we do not need to solve all this liquid phase equation, right.

 We are just concerned with whatever is the wet bulb the temperature, right because the liquid

is not getting heated anymore, it is not getting evaporated. So, whatever heat that is coming in

is going towards evaporation, right.
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So, but in, in we in order to estimate that ratio if we say that ratio is, right capital N, which is

nothing but the ratio of, of liquid heating time okay to droplet it in time, right. So, there are

two ratios, right. The droplet heating time and the liquidity time and there can be a very

significant way of finding this, okay.



So, let us assume, the liquid heating time is governed by Tau H, right. So, what is Tau H? Tau

H is defined as a time required for the thermal wave which is originating and the droplet

interface  to  move to the  core,  right.  It  is  the  time required  for  a  thermal  wave,  okay to

penetrate, from droplet surface, okay, to droplet center, okay. So, Tau H is therefore given as

R naught square by, okay.

That is basically the diffusion scale, right. That time that it needs if it proceeds by diffusion

that is the time scale you already know about all  these things, right.  For the time that is

required for the thermal wave basically to come from the surface all the way up to the center.

So, that is some kind of a liquid heating, heat up time, so to say. That is where the droplet

center actually feels that there is something going on at the surface, okay. 

Is equivalent to saying like this? You are hitting that wall, okay far away from me. I am

sitting over here. I am not able to feel that there is something action is going on at the surface

right. I will only feel it when the temperature gradient will come and hit me, right. So, when I

will feel that there is a rise in temperature, right so that we can call about that time lag, right. 

It is basically called that effect actually penetrates and comes all the way up to me. So, this is

something like a, so, from a droplet perspective. That is something like the droplet heat up

time, okay. Now, the droplet lifetime on the other hand lifetime is given by Tau L. What is the

order of this? The order is 1 minus R naught square, okay, dr square by dt - 1. Tau L is

basically given as Rho L R naught square divided by 2, Rho D log 1 + B, right, okay.

So, you know if we take the ratio Tau H by Tau L which is given as n is basically given by 2

lambda Cl by Cp log on 1 + B, okay. So, that is something that can be computed, right. So,

that is the computation. In most of the cases you will find, that Tau L and Tau H are of same

order, okay. This is particularly valid if the droplet has if the large portion of the droplet life

time.

And it especially happens, when your ambient temperature is high particularly happens when

your T infinity is quite high, okay. And you have higher hydrocarbon fuels, okay. Higher

hydrocarbons will always show this kind of characteristics where the droplet heat up time and

the temperature are almost the same. 
(Refer Slide Time: 25:19)



Let  us  look at  two graphs  to  illustrate  this  particular  thing  taken  from journal  of  fluids

engineering, okay the temperature versus non dimensional radial coordinate, right. And you

can see even at 90 percent or 85 percent of the droplet lifetime, okay. Still there is a slope. Let

us see that it is just about reaches there, okay. 

It has not reached here. This portion is largely shielded is not that so? Largely shielded, right

from the influence of what is happening there, there, right. So, you can see even at this is

taken at 52 percent of the droplet lifetime even at 85 percent of the droplet lifetime still you

retain a little bit, okay where this has not really sensed, right. 

So, this actually shows that you know the droplet heating time, okay is actually may be a

substantial portion not always but it can be a substantial portion of the overall lifetime of the

of the drop, okay. And that is a very important concern over here, right because our analysis

and all those things depend on this, okay. 

Now, if you look at the definition of Bh. what it was? It was h infinity - hs by L effective,

correct. Something likes that, well. Well, you, you are familiar with Cp - C infinity - Cp into

Ts divided by L effective, equivalent definitions, okay. It does not really matter, okay. Now,

here you can see that, okay.

Initially your L effective, okay must be greater than L, right because it is the initial heat up

time. This is this happens during the initial stages, okay when droplet heating is going on and

evaporation is marginal, okay droplet it. Because evaporation, as you know, is a function of

the P sat, right. Because asked with temperature P sat goes up. So, your evaporation rate also

starts to climb, okay.



So,  this  Bh but  initially  this  is  large,  but  then subsequently  what  happens is,  it  starts  to

decrease okay. Now, in that particular case, your Bh your value of the Bh actually changes

over the droplet lifetime, okay. In fact Bh you will find it decreases by 1 order. 1 order during

droplet lifetime, got it, okay. It happens. It decreases actually by one order during the droplet

lifetime, okay.

So, if you recall that, what we did, if you recall this? That the type II model, model was

basically where we consider that is the infinite liquid conductivity and type III model is this

current one, that we are actually doing, right. It is a spherically symmetric assumption, right.

Now, type III model, actually type II and type III model are actually becomes the same, okay. 

If you assume that the lambda l is much, much greater than lambda, right, that means, the

liquid phase thermal conductivity is very, very high and B is small okay. And Cl okay it is

much, much less than Cp, okay. So, ambient temperature for a few 100 degrees that means T

infinity is of the order of 100 degrees, okay. 

This  actually  leads  to  the  surface  temperature  Ts  is  the  same  as  the  volumetric  mean

temperature, the volumetric average temperature of the liquid that happens, okay. It is always

equal to the volumetric temperature of the liquid in, essence; it essentially means that the

instantaneous  droplet  mass.  And  then,  so,  the  ql  that  we  conjectured  earlier  is  basically

therefore, if you recall, this expression, right when that happens, okay.

So, the instantaneous droplet mass and this is basically what we call the average, temperature

of the liquid, the liquid front, okay. At one point of time, as we said earlier, that Tl becomes

equal  to  the  T wet  bulb,  right  to  the  wet  bulb  temperature.  When  that  particular  thing

happens, okay this term basically boils down to 0, got it, okay. 

So, we have said that a character; so, we have established over here, okay that when do we

actually require to solve for the temperature field. We need to follow it for these cases, right.

Where there is a strong temperature gradient as you can see. It is not negligible and it persists

for quite a bit of a droplet lifetime. In that case you have to solve this and you have to link it

to the outer gas flow field via the interface condition, right, okay. 

So, that is very important. So, the next class, what we are going to do is that we are going to

now consider what happens, when there is convection inside. The convection part is very

important, okay. When there is convection inside, what happens to the analysis, okay. So, see

you next class. 


