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Lecture 21
Droplet vaporization models-I

Welcome to today's lecture! So, here what we are going to do is that as promised we would

now take a look at the different droplet level models, right. 
(Refer Slide Time: 0:32)

Like the different droplet vaporization models and we are going to go one by one, okay. So, if

you look at the first simplest model is a constant droplet temperature model, right. Now, this

is the model that is going to yield you the d square law essentially, okay. There can be also

infinite  liquid  conductivity  model  it  means  that  the  liquid  conductivity,  the  liquid

temperature. 

So, if this is a droplet, okay. The temperature within the droplet is uniform spatially. That

means the temperature will be like this. However, this temperature might actually vary with

time,  okay. It  will  go up with time.  So, that  is  the infinite  liquid conductivity  model.  In

essence it means that a lambda or the K whatever you use to represent the liquid conductivity

that is very high, okay.

So, this is akin to the lumped capacitance model that you have learnt in your heat transfer,

right. So, because there is no variation of temperature within the droplet, okay. And constant

droplet temperature model means the temperature is constant no matter what, okay. These

two can be linked with each other and in fact they are linked with each other and we will see

how in a in a little bit.



Then, there will be the spherically symmetric transcient droplet heating model. In this model,

what  happens  is  that  the  liquid  temperature  within  the  droplet,  okay.  It  is  not  actually

uniform, okay. So, that means there will be a temperature gradient of some sort, whatever the

temperature gradient is, okay. So, that temperature gradient, so, there will be a variation of

temperature within the droplet, okay. 

So,  within  the  droplet  the  temperature  will  be  a  function  of  r.  But  still  it  is  spherically

symmetric. That means, it is isotropic in nature, okay. So, there is no variation. Temperature

is not a function of theta or Phi, got it. So, there is no as a azimuthal variation, okay. So, that

is called a spherically symmetric transient droplet heating model. 

There is something called effective conductivity model also which we will come across a

little later. Then, there is something called the vortex model. The vortex model actually takes

into account the fluid flow inside the droplet, okay. So, it actually is a convective model. So,

it takes into account how the fluid, the liquid inside the droplet is actually churned, okay.

As a result of that you have to solve the momentum, the energy equation within the droplet.

But what the vortex model is effectively does is that you can assume of flow filled within the

droplet, some assumed flow field, okay. And we will see what that assumed flow field is. And

you can  get  around solving  the  full  momentum equation.  You can  just  solve  the  energy

equation, right. But it is a full slated convective solution. 

Then, there is a Navier-Stokes solution that means you solve basically the entire thing, okay.

You solve the liquid flow momentum equation, you solve the liquid flow energy equation and

you solve the gas phase momentum energy in all those equations, right. So, it is in increasing

order of complexity essentially, if you think about it, okay.

And depending on the situation that you are concerned with, like for example, in cases, where

the surrounding temperature is not very high, okay you can get around using this and this,

right okay. Or in cases where the liquid thermal conductivity is very high, okay, you can get

around using this kind of a model, okay.

But, in cases where the droplet  size is large, say, for example,  size is large meaning; the

thermal mass is large, okay. So, that means essentially your Rho l Cl is large right okay in

those particular cases what will happen and your thermal  conductivity is not that high in

those cases you will find that the spherically symmetric transient droplet heating model, okay

is the correct way to do. 



That means you have to solve the energy equation basically solve the conduction equation

within  the  liquid  droplet,  right  okay. Effective  conductivity  model  is  a  variation  of  this,

except  that,  here the thermal  conductivity  lambda is  actually  revised to something called

lambda effective, okay. This is done because if there is a flow within the droplet, okay. 

What does the flow do when there is a convective flow within the droplet? What does the

flow do? It basically promotes mixing, right. So, effectively you can think about like from a

turbulent perspective, we were heard like there is something called effective viscosity and

things like that. 

Here also this is effective thermal conductivity that means, in effect, your droplets thermal

conductivity as if is going up because of this flow that is generated within, okay. You want to

have a little bit more fidelity you can use the vortex model in which you actually impose a

flow solution within the droplet.

And  then  you  solve  basically  the  energy  equation  using  the  velocity  term,  using  the

convective derivative term. And then, you, of course, have the Navier-Stokes equation which

is the full-fledged solution of the same. So, given this pollute, okay let us look at now the first

of the problem that means the droplet vaporization using deriving basically the d square law

okay. 

So, I guess this actually tells you that what we are actually looking at and we will come back

to this in a little while, okay. 
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So, Droplet Vaporization,  okay. So, as we know, if you recall the previous lecture, it  is a

spherical droplet vertical in shape; single component.  Let us not assume multi-component



droplets over here. That means if it  is a water droplet is a water droplet;  that there is no

ethanol, there is nothing okay. 

But, if it is the fuel droplets, it is the pure fuel droplet. The ambient is basically quiescent,

okay. That means there is no fuel, there is no gravity which you know already, it is true, okay.

Then, there is a spherical symmetry, right. And there is a state of quasi steadiness which we

already established why, when we can consider the flow field to be quasi steady, right. 

And I am not including the combustion parameters here, okay. That we will cover a little

later. So, these are basically the assumptions; the basic assumptions, okay. Now, let us look at

each and everything in details now, okay. And we already have a diagram that how a droplet

actual evaporates. So, this is the droplet evaporating like this, correct, okay. 

So, this  is  the ambience,  ambient  okay. And this  is  the surface of the droplet  this  is  the

surface, okay. Now, based on this let us see how we can actually solve this, okay. So, let us

consider the mass conservation first, okay. So, the mass conservation is basically how the

droplet is basically losing its mass, as simple as that okay.

It is four third Pi Rho l rs cube m dot, correct. This is basically the deduction in mass of the

droplet, okay which is happening over time and this is basically the mass that is leaving the

droplet, very simple okay. Now, if we now want to do this you want to write this further we

can take density to be constant, the liquid density to be constant. So, it comes out of the other

bracket r s square drs by dt, got it? 

And that is the right hand side, okay. If we write it in terms of the gas phase flux okay rs

square Rho g into some velocity, correct, okay. Is not that correct, okay? So, this is basically

the mass flux. This is the area, okay and this is the flux with which the gas is actually leaving

just to have to match because whatever the mass the liquid is actually the deficit,  that is

happening in the liquid has to be carried out by the vapour in essence okay.

So, or if we do this now like that it will become Rho g by Rho l into v, right. And as we know

that Rho g by Rho l is much, much less than 1. This is true for all the cases, right. So, this

actually implies that this rate which we already established in our last class is much, much

lower than this, right.

It is Rho g by Rho l, right. So, it is a order of 10 to the power of -3, correct. So, this would

mean that drs by dt is basically ordered 10 to the power of -3 into v, right. So, essentially it

means that v is much, much faster compared to drs by dt, right. This is what we established



last class also, okay. Essentially means that a regression of the droplet diameter is very, very

slow compared to the diffusive flux, right okay.

In  that  particular  case,  we  can  say  that  this  is  basically  this  justifies  our  quasi  steady

assumption, okay. We already knew this is another proof that and we have shown over here,

got it. So, now let us write after that we have established this okay we do not really need the

liquid phase anymore okay. 
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So, we will now try to look at the corresponding steady gas phase conservation equation,

okay, so, gas phase conservation equations, okay. Now, let us assume that this is the droplet

once again following the notation of Martian Matlon we are using this. This is the liquid. The

surface is denoted as a, this is the gas. It can be any notations by the way it can be rs, it can be

a, it can be whatever you can think of. 

But the basic thing does not really change, okay. So, this is a steady gas phase conservation

equation. We already are using the word steady because we have already proved that it is a

quasi  steady  gas  flow field,  right.  So,  we  do  not  need  to  carry  the  temporal  derivative

anymore, okay. And this is the gas phase. So, in the gas phase what can we write in the gas

phase?

And I am not using Rho g anymore, okay. So, not using Rho g, so, when we use the liquid we

will use Rho l. We will use the subscript l, okay. So, that is what we have that is a gas phase

conservation equation, right; the mass conservation equation, okay. So, the next equation that

we are supposed to write is basically the species, right okay. 



Though it is a single component in the liquid phase right. But as the vapour comes to the

vapour phase, right it is a multi-component system, correct; because there is fuel and then

there is air, okay. There is whatever the species that is evaporating. It is evaporating into the

ambient which is air, right. So, you have to write the species balance equation for the vapour

that is coming into the ambient, right.

So, under this assumption what we do is: And we are writing the evaporating species as dYF.

The notations are a little bit different because we are writing it in the spherical system. So,

this  is  like  for  example  water  vapour  in  air  or  fuel  in  air,  if  you  are  considering  the

combustion of droplets, right and YF is basically the evaporating species, correct okay.

This should be clear. So, so, that is the first equation. That is the species. Now, we can write

their, the temperature form also, okay. So, that is basically the energy equation, right. So, this

is the tempura all of these are written in the gas phase. Remember, we are writing nothing in

the liquid phase. And if I have understood correctly as I said in the last class the liquid is

always single component, right okay. 

So, the vapour that is coming out is going into air. So, it becomes a multi-component system.

The gas phase is multi component; at least binary, okay. It is air and tough fuel, okay. So, we

are  considering  it  to  be  like  that.  And these  are  the  three  equations,  mass  conservation,

species and the corresponding energy, right and they are we have written it in a very succinct

way. 

Now at r  goes to infinity;  that  means far away from the droplet,  right.  What  will  be the

temperature? The temperature will be some kind of an ambient temperature at T infinity, okay

whatever the temperature may be. The Rho will become equal to Rho infinity. That means the

density and YF will become equal to 0, correct, okay. In case of fuel in air, there is no real

fuel present in air normally, right.

So, YF will have the value of zero, right. Even in the case of water vapour, the component

amount of water vapour that is present in air is so, so very less, okay. That we can almost

consider to be equal to 0 as a very far field, right. So, that means it is almost like relative

humidity is equal to 0 there, right okay.

So, normally that will be that if, if you are considering a system in which the evaporating

species is already present in ambient in substantial quantities you have to use the appropriate

values over there, okay; whatever is appropriate value, got it. That is whatever it is a typical

value, say, for example, in if it would have been like saying example some other gas, right. 



And air already has say, 5% of that gas. Then, this value will be 5% equivalent value will be

5% over there, right. So, at the liquid gas interface okay. So, the liquid gas interface is very,

very important, okay. So, the liquid gas interfaces because we are dealing with basically all

these interfaces, okay. 

So,  how it  can  be  derived?  It  can  be  derived  by integrating  the  energy and the  species

equation across r = a in terms of enthalpy, got it. How it is derived? Let us write it. It can be

derived by integrating, okay. Energy and species across r = a. That means across two sides of

the interface and we usually do it in terms of enthalpy, got it, clear on this particular part that

at the liquid gas interface and we will see how we are exactly going to do this, okay.

Now, that is my interface. Interface is the most important thing, right because that's what we

have been doing for so long, okay.
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In terms of the enthalpy, the equations are written like this, okay. And r square Rho V is equal

to constant that  you know from continuity, okay. So, including this over here,  okay; that

means we write it in the conservative form, right. We can always write every equation in the

conservative form. 

So, that will give you, sorry, that is equal to zero. So, if you cannot see it right in bigger over

here similarly there is nothing fancy. I have just included the continuity equation inside the

energy and the momentum equation. Let us call the conservative way of writing the equation,

okay, got it, okay. So, this is like at a compact. 
How you can write it compactly, okay? So, now, what we do is that we integrate the species

and that is what we said, right. That we will integrate the species; species from r = a - to r = a



+. That means, on either side of the interface, right; minus plus minus means is within the

liquid plus it is just in the gas phase, right.

On either side of the interface, this is your a, right. So, this is just around the interface on both

sides, okay. Now, the concentration gradient, Now, once we actually integrate this. Let us

write the form of the integration because all the integration all are with respect to r, right. So,

it  is easy to integrate,  right.  There is no problem. Now, you can understand why we got

everything inside so that we can integrate it out easily, right okay.

So what it will be is after integration what we get is, right? That is what it is right, it is a

definite integral so we are integrating it from a- to a+, and that is equal to 0, right. Now what

can we say? Now that we have established this, what about the concentration gradient within

the droplet, right? Since it is a pure fuel, there is no question of any concentration gradient.

Recall  the  lecture,  that  we did when we had a,  when we say that  when there  is  a  pure

component, okay. There is no concentration gradient because there is only one component,

right. How can there be concentration gradient within the droplet, right. So, for pure fuel or

whatever is a liquid that you are concerned about, okay. 

The concentration  gradient  within the droplet,  gradient  within  the droplet  does  not  exist.

There is no concentration gradient, right okay. Or within the droplet you have basically YF =

1 has to be the case always, correct okay. So, therefore, Rho V YF - Rho DF dYF by dr must

be equal to Rho V at r = a, okay, getting the point. 

So, this should be the equation that one should be able to write that this is the expression

rather. At r = a, that means at the interface right r = a. That is the interface basically. So that is

the expression that we have written over there okay. So it is basically this minus this is equal

to that. 

And this, remember, that one is in the liquid phase, one is in the vapour phase. So, do not

confuse yourself. In the liquid phase that means at a minus this particular thing does not exist,

right.  So,  you only have that,  right.  For it  is  a square Rho VYF, correct?  When you are

actually dealing within the vapour phase, of course, this will stay. It has to stay, right. So, into

it will stay in that particular form, right.

So, combining those two things we actually have got this particular relationship. So, I think

this is understandable, okay. 
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Now, let  us  integrate  the  energy equation.  That  is  important.  So,  the  energy equation  is

integrated in that similar way what you have is a Rho vh lambda r square, okay. That is it

right. It is again the integration of the similar form, right. Now, if we now substitute, start

substituting the values at a - and a +, okay. What are we going to get from this?

Just follow the term. There are two lambda a square, got it, okay. This is basically nothing but

V into a into the corresponding enthalpy of the vapour and the liquid,  correct. Now, that

vapour and the liquid enthalpy, if  we consider, what  is  this  term actually  called?  This  is

basically called QV or the latent heat of vaporization is not that so? Is the latent heat of

vaporization, right. 

It is a latent heat of vaporization because it is the difference in enthalpy of the liquid and the

vapour right, okay. On the other side you see two expressions. Now, one is basically  the

temperature gradient in a vapour phase; one is the temperature gradient in the liquid phase,

right. Now, here is where the plot actually thickens a little bit, okay. Now, what can you say

about this quantity is easy? This is well known, right. 

But if you have to evaluate this, then, okay, then, if the temperature gradient needs to be

evaluated in the liquid phase, okay. Then you need to solve the full liquid phase equations,

right. Otherwise how would you know what is the temperature gradient at the surface, is not

that so? This is the liquid, right. You know what is that you have an expression where it

requires the temperature gradient at the surface, right.

Now,  unless  you  know  the  temperature  gradient  throughout  the  temperature  profile

throughout,  right.  How  are  you  going  to  know  what  is  the  temperature  gradient  at  the



surface? So, it requires the full solution, right. It requires a full solution so that full solution is

needed in order to evaluate this. 

Now, here  is  where  we  are  going  to  make  an  assumption,  okay. Now, this  temperature

gradient if you think about originally what we did a- is almost equal to four third PI a cube

Rho l Cl okay. That means that if this exactly means that all the heat that is conducted goes

into heating of the droplet. 

This is the heat that is conducted, right. It goes into the heating of the droplet where this is the

temporal signature of the same, understood. What does this mean? This means is essentially

the slope, right, of the temperature curve here. And what does this mean? This essentially

means the heat that is conducted inside the liquid phase is not that so?

You have always seen k dt by dr or lambda dt by dr whatever you call. It is basically nothing

but the heat flux, right. That you know from your conduction studies, right. So, essentially

this means how much heat is conducted within the droplet. And the amount of heat that is

conducted within the droplet is basically used up in heating the droplet, basically increasing

the temperature of the droplet, in a temporal fashion, but not in a special manner, okay.

So, all the heat actually goes over there. So, therefore, therefore lambda dT by dr. This is the

slope in the vapour phase right that is equal to Rho v Qv, Qv is a latent heat component plus

for third pi a cube Rho l Cl it is actually Cpl. So, you can write it in whatever way that you

want okay, in the liquid, okay. This is basically Cl is basically Cpl, okay. Now, this portion is

usually considered to be small, okay. 

This is usually considered to be small not always but it is usually considered to be small. And

there is a limit called the wet-bulb limit where this is basically equal to 0, okay. But that

happens not immediately. But after a certain span in the droplet lifetime, right. So, if this is

equal to zero. If you take this particular thing out, then, this is basically dT by dr = Rho sorry

Rho v into Qv. Qv is a latent heat, okay.

Or if this if you are going to include this also then this Qv is actually written as Qv effective,

okay. So, you sum the two, okay. In some cases, for example, Sirignano write the same thing

as L effective, okay. So, QV is written as L and QV effective is written as L effective, okay. It

is a notation thing, basically, means the same thing essentially, right. So, in the wet bulb limit

this can be 0.



In  some  cases  the  magnitude  of  this  can  be  0  as  well,  okay.  Under  whatever  is  the

consideration, so what we have done is that we have established a relationship in which the

slope,  okay is  actually  matched with the corresponding latent  heat,  okay of vaporization.

Similarly if you recall what we did in the case of the other species balance, sorry. 

What we did in the species balance also we have established this particular for once again

that is the slope of the species in the vapour phase, okay. That is also given by these two

terms, got it, okay. This should be clear, okay. Now, let us look at it. So, we are coming close

to finishing this particular thing, okay. 

Now, we already know that the phase changer, the interface happens very fast, right. That we

established already, right.  It  happens very fast.  So,  therefore,  we assume that  equilibrium

conditions actually prevail right. 
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So, the phase change happens very fast, okay. So, we can assume that equilibrium conditions

prevail,  got it.  Since equilibrium conditions prevail,  we can write the Clausius-Clapeyron

equation okay to link the mass flux to the YF basically. The species mass fraction to the

corresponding temperature at the interface, right.

 So, PYF = k Qv by r QV is l the latent heat. TB is basically the surface temperature T = TB

at r = a. So, this is nothing but the Clausius-Clapeyron equation,  okay. So, the boundary

conditions at r = a is written as Rho v YF minus clear, okay. So, that is the species, this is the

energy and this is the corresponding temperature, okay. 

And there is a connecting relationship, okay, between the temperature and the species using

this, right, the Clausius-Clapeyron equation which we already covered in the last class, okay.



So, still now, we are not in the d square law format okay in the, in this lecture. In the next

lecture, we will see how to go from here to the d square law, okay. 


