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Interfacial Transport Including Dynamic Behaviour

So, the next we as we said in the last class that we have done the mass we have done the

momentum. Now we are going to do the energy equation, right, okay.
(Refer Slide Time: 00:28)

So, energy balance at the interface ql double prime - qv double prime dot n relative + square

by 2 - el okay where if this particular form where work done by surface tension ST and

disjoining pressure is neglected okay. And the velocity of the reference frame is taken as the

interfacial velocity VI right. 

Velocity of reference frame is taken as the interfacial velocity VI okay. So, now this can be

further written in this particular form Kv, so, this is basically we are using the Fourier law of

heat conduction right. To replace the q this and this right the two flux term. This you have

already seen earlier okay. So, this equation can be further written in terms of the enthalpy, let

us go to the next one.
(Refer Slide Time: 03:32)



So, in terms of enthalpy, this become; these are basically long equation. So, just take the

enthalpy that's the definition for enthalpy right, okay. Now based on this you can write Kv is

basically nothing but the Fourier law of heat conduction terms that we have written over here,

long equations this is the corresponding work done by the stresses VI = m hlv that is latent

heat component Pv Rho v - Pl Rho l + half Vv square VI – half Vl square +Vl into VI.

So, this is basically the latent heat of vaporization, right, okay. Similarly likewise we told

earlier that the stress tensor is already predefined right PI + 2 mu D - two-third mu okay to

the corresponding identity. So, since the relative velocities of the interface also satisfy this

condition Vl – VI into  n must be equal to m dot prime divided by Rho l right.

That  is the velocity  of the interface think about it  adjust  that how much of the interface

actually move that is basically what is taken up by the mass flex. The amount of mass that is

going to the other phase okay and similarly we can write  it  be Vv - VI into n = m dot

remember that this is liquid density this is the corresponding vapour density, right, okay.

So, combining all these things together if we write it now Pl Vl - VI dot n - Pv Vv - VI dot n

m double dot - Pv – sorry - Pl divided Rho l okay that is the expression, that is a form that

you get okay if you do this  kind of substitution.  Now from the relative velocities of the

interfaces you get that okay.

Now if you to simplify the energy equation that you have over here this guy that you have

over here. We can make several assumptions because that is a long equation, right. Normally

you do not encounter equation, as large as this right. So, how to actually make it appear a

little bit simpler. So, there are two ways that you can do it one is that if you neglect the

kinetic energy terms, neglect it, right.



That is one way of doing it and if you assume that they are there are no slip conditions at the

interface okay. By no slip condition therefore you mean Vlt must be equal to Vvt must be

equal  to  VIt,  right,  okay, across  the interface  all  this  velocity  should be the  same in the

tangential direction that is a no slip basically okay.

So, the energy equation therefore okay, if you apply all these cases okay, there that there is no

kinetic energy change, there is no slip etcetera, etcetera. 
(Refer Slide Time: 08:05)

It becomes a perfectly manageable form which is given by n, this I argue to do the math; it

just requires the substitution dot n that is it, right. So, it is basically two heat conduction terms

that you have right. And the corresponding mass transfer due to evaporation or whatever and

the corresponding latent heat okay.

So, we can arrive at  this  particular  form of this particular equation just by making those

assumptions over there okay. So, this is also widely used in fact in most of the cases we will

use this right.   So, this is the conduction is equal to whatever the mass that is taken away

right, by this okay.

 Now you can compare, you can make, you can have analogies in which you can compare the

order  of these two terms.  And you can make assumptions that  which gradient  to neglect

which is gradient; to take okay and things like that okay. But other than that, that is what you

are supposed to get okay.

Now before we go to the species equation okay and species equation comes with it a little bit

of the, how the phase change actually happens okay. Let us look at an interesting term over

here.  So, we will  come to this  thing a little  later. But before that I wanted to cover the;



because we are still in the momentum part of the equation and momentum and energy we

have covered.

Let us look at some of the dynamic behaviours of these interfaces because we have done this

momentum balance  across  the interface  and things like  that.  Let  us  look at  the dynamic

behaviour of the interfaces before we go on to the species balance and then we talked about

how evaporation actually happens, right.

How the slopes matter’s, just now we established that there is a to conduction terms basically

right, that you saw is equal to whatever is the mass that is that actually evaporates right from

one phase to the other, right. If we neglect all the kinetic energy terms and everything okay,

which is very normal practice to neglect the kinetic energy terms?

Because other terms are so much more significant right, so but before doing that let us do the

dynamic part of the interface okay which is what we are going to do in this few slides. 
(Refer Slide Time: 10:31)

So, these kinds of examples are seen everywhere, right. Say for example you have a vapour

right and you have a liquid right okay. So, basically by vapour and liquid means is a there is a

very large variation in density okay. Vapour liquid density is almost like thousand times right.

So, what happens is that there is a layer of liquid which is sitting over a layer of vapour, right.

Let us look at the problem in this particular fashion right. There is a layer of liquid which is

sitting over a layer of vapour and both of these two are actually moving right. So, here there

is a velocity which is uv which is the vapour phase velocity. There is a velocity which is ul

okay this average velocity which is in a liquid phase okay.



And there is an interface which basically separates the two, got it, okay. Let us not talk about

evaporation and all those things for the time being okay. Let us keep this problem very simple

now what happens is that our physical state of this interface okay is said to be stable if it can

withstand a disturbance and return to its original state okay.

So, if the statement is like that means if this is the interface and I give it up give it a spanking

let me if I just perturb up the interface and I create this perturbation which is delta, right. It is

basically you can consider it to be like a string right and I am basically just clipping a part of

the string, right. 

So, it naturally will oscillate, now if this oscillation dies down and it returns to its original flat

configuration which is this configuration right, then we will call that this is a stable situation,

right. So, nothing happens you impose a disturbance that disturbance decays away and so it is

a stable configuration okay.

So, in this particular case gravity is appearing this way, the horizontal pipe and you have a

liquid and vapour both of which are actually moving right very common problem, okay, need

not be always liquid vapour, it can be disparate density fluids also. On the other side of it, if

we, if I just take this and if I just rotate the whole thing okay.

So, what will happen is that gravity is now fabering appearing like this correct. And you have

a liquid velocity and you have of vapour velocity same thing interface is now vertical instead

of horizontal. And again you perturb it and see how the perturbation actually evolves, got it,

okay. So, here the parameter that we are interested in can be anything.

This is Phi it can be velocity, it can be pressure, it can be temperature, it can be species also

whatever okay. And disturbance of this magnitude which is given by Phi prime, Phi with a

prime, right. That is actually added that means when there is a velocity u we are adding a

perturbation which is u prime, right.

So, and the interface gets disturbed by this magnitude which is given by delta okay. So, the

both phases we are assuming they are incompressible. They are invicid so that we get rid of

all those all those viscous stress terms. And it is not it is immiscible that means they do not

mix with each other. 

That means there is no diffusion that happens okay in terms of one species going into another,

right. So, you can you can think about it in this particular way right okay. 
(Refer Slide Time: 14:04)



Now the liquid and the vapour flows are essentially two dimensional in nature that is another

set  of  assumptions  okay. So,  based  on  that  what  we  can  do  is  that  we  can  write  three

equations this is the mass and the two momentum right. Why the viscous term is not there,

this is because we have neglected viscosity.

 We have assume that it  is  invicid in nature,  right.  So,  what we have,  you have the you

variation of you this is the convective derivative which is basically the inertial term. And this

is the corresponding pressure we have added gravity in the first case, okay. That is because

of; in one case in a y momentum equation gravity enters into the picture.

So, if you look at this particular equation this is a y-axis so gravity is acting along the y-axis

correct, okay. So, that is why the gravity term is already there, right. Now we are going to

decompose the velocity. So, there are basically three variables right, u, v, p right. So, we are

going  to  decompose  the  velocities  and  pressures  into  a  base  flow  and  some  perturbed

components, right. 

So, it is almost like a team to the Reynolds decomposition that we do okay in your turbulent

flows, right. So, what happens is that you have a u bar which is a mean or what is called the

base flow and then there is a perturbation component, v is given by v bar and a perturbation

component. P is given by p bar and a perturbation component.

So, everywhere there is that perturbation component, right. So, you substitute all of these

things over here in this set of equations, right. So, what you get that is the set of equation and

you recall that your u bar and your v bar and your p bar all satisfied the Navier stokes and the

mass and the continuity equation, right, okay.



So, based on this substitution you now arrived at three additional sets of equations, right,

okay. The first one is basically nothing but du prime dx v prime dy that is the continuity

version of the perturbed component, okay. You can think about it like that okay. The next

component is this, the next component is that.

Now the products of the perturbation and why does your g actually drops out that is because

it does not have a perturbation, right, okay. And we have assumed that the densities of course

fixed okay. So, there is no perturbation on the property right that can also happen. But here

we are assuming that the perturbation is not happening on the density.

And the product of the perturbation that means the prime terms are neglected that is u prime,

v prime is  neglected.  Similarly if  there are quantities like u prime,  p prime these are all

neglected okay, so, they are all neglected right, okay. Now we take this set of equation and we

differentiate it with respect to x and y right, respectively, okay.

And then we sum them and we substitute the continuity equation. This is yields what we call

the Laplace equation for the pressure perturbation filed. If you do this you get this particular

equation which is basically nothing but the pressure perturbation or this is Laplace you can

see that this is basically this, right, okay.

It is the Laplace of the pressure perturbation okay. It is not the pressure it is the pressure

perturbation, so, that is what we have done over here. So, basically what we have done is that

we  have  basically  taken  the  derivative  with  respect  to  x  and y  okay  and  then  we have

substituted the continuity we have sum them and we get the Laplace pressure field, okay.

So, this is the pressure field or the perturbed pressure field that you get right and the shape of

the  interface  that  we  showed  at  any  particular  point  of  time  is  assumed  to  follow  an

expression like this. This is very typical linear stability type analysis that people are normally

familiar with, right.

So, what this had, it has basically as z component that means the interface fluctuates in the z

direction. If you look at it okay so that is the interfacial fluctuation and there is that there is a

time component okay.
(Refer Slide Time: 18:13)



Similarly the postulated forms of v prime and p prime is also taken as a similar form, right.

Like we took in the case of delta okay we took it in the case of delta we have done a very

similar  thing  for  v  prime  and  p  prime  okay.  These  are  postulated  forms  okay  we  are

postulating that this will be the form.

And then we use the corresponding Laplace this is a two-dimensional filed okay only one

curvature is needed right. So, the p capillary pressure is what we are using over here, okay.

So, based on these postulated form one can show and this is not a linear stability analysis

class. We are not going through the detailed math of how we are arriving it, arriving at this

okay.

What we get is that an expression like this that means the square of the velocity difference

between the two phases not the perturb but the mean velocity square. And you have taken a

modulus of that that means you have taken a minus taken absolute value of that and squared

it okay. So, it does not matter which one is positive or negative right.

Which one is slow or fast correct, okay, so that is given by this particular expression like? Let

us look at it term by term there is a term involving Sigma which is the surface tension. There

is a term involving the gravity right, okay. And this alpha that we have written over here is

called the wave number okay.

It  is 2 pi by lambda,  lambda is  the wavelength.  So, alpha is the wave number. Now the

surface tension and gravity so, this is such a tension term this is gravity term right that is what

we told. So, first of tension and gravity tends to stabilize the interface for this configuration

okay. So, if you look at the configuration for their; for this particular configuration right.



Both gravity as other surface tension tries to stabilize the interface that means it tries to bring

the interface back to its original configuration which is flat right, okay. So, both gravity and

this tries to do it okay. So, the right side of this and remember this is also an inequality form

right so this must be greater than that okay.

So, the right side of this inequality has a minimum value, right side means this site has got a

minimum value when the wave number is equal to the critical wave number right. So, if you

minimize this part the right hand side of this equation right okay. What will happen is that

this has a minimum and that minimum okay that minimum alpha because all other quantities

okay, so, are fixed right. So, only alpha is the variable that you have here.

So, basically you minimize this quantity in terms of alpha right okay. So, that critical alpha is

given by this particular parameter which is nothing but Rho l - Rho v that is the difference in

density of the two phases’s right and multiplied by g divided by Sigma and the root over of

that right, okay. This sounds familiar to a certain audience; you can think about it and give the

answer in the next class.

That what does this actually resemble right, this sigma divided this you can write it like this

Rho l – Rho v into g and root over of that okay. This is an interesting quantity okay that is

associated with this okay. So, what is this basically means that it is basically stigma and the

corresponding gravity essentially right, okay.

Similarly when you substitute this alpha critical over there okay in the expression you get a

critical difference of a velocity differential, right, okay. And that is given by this particular

expression okay. For motionless liquid over motionless vapour that means when the both the

phases are actually static right, okay.

So, this was it was it is actually moving right. Now if the vapour and the liquid phases are all

motionless in nature then alpha must be greater than alpha critical  that means it  must be

greater than this particular quantity. Lambda c that is the critical wavelength okay is given by

this particular expression which is nothing but this particular length scale that we have here.

And this perturbation, a perturbation which has a wavelength greater than this lambda c will

actually grow. That means when you have a motionless liquid sitting over motionless vapour

what will happen is that if you perturb it okay with up with an amplitude okay which is

greater than this particular critical wavelength okay. This will actually grow right.



So, look at one particular thing a perturbation greater than this wavelength that is the key

clause over here right. So, when this Rho l and Rho v becomes very close to each other right

that means you are dealing with water and something which is a little bit more denser than

water right. What will happen in that particular case, right?

This  lambda c will  be a  very large quantity  right.  So,  in  order  to  perturb that  particular

interface you need an exceedingly high amplitude right, because that amplitude space is very

large lower than this would not do anything right. So, the perturbation needs to have a huge

amplitude okay, it is a long amplitude okay, a long with wavelength essentially, right.

Similarly on the other hand if this density difference is huge typically what happens between

liquid and vapour right, it is a huge density difference right. This quantity is very large right.

So, the wavelength space if you look at it, so, previously if this was the critical lambda c

right. The critical lambda c is pushed back right to the short-wavelength regime correct.

When you actually dick have a large density differential which is delta Rho correct. When it

gets pushed over here to this side okay any wavelength which is greater than this will make

the interface unstable. Previously what happened when the interface was here right when the

critical  wavelength was here any disturbance in this region will not be able to create de-

stabilize the interface.

On the other hand either if the density difference is too large okay essentially what we will

have, you will have the disturbances okay for of very short wavelengths also can actually

grow right.  So,  that  is  a  very  key  takeaway  point,  right.  Even if  you do not  remember

anything if you just remember this okay. This actually shows that if the perturbation for a

motionless configuration.

If  the  perturbation  is  greater  than  this  amplitude  it  will  grow  and  you  should  always

remember that surface tension and gravity here tries to stabilize the interface. So, we have to

fight against to them essentially, right, and that is what exactly what you are doing over here

by making your wavelength greater than that right.

So, this particular thing is called it is a got a celebrated name it is called the Rayleigh-Taylor

instability  okay. It  is  called  the  Rayleigh-Taylor  instability, so  you can  have  a  recap we

actually  have  a  flat  interface  okay  with  two  fluids  moving  on  both  sides.  We  add  a

perturbation component to the whole thing right we decompose it  into two components I

mean in into a mean flow or a base flow.



And a perturbation part and then if we differentiate the equations and do some math basically

it is just a tool and it is very standard these days okay. You get a Laplace of the pressure

perturb of pressure field.  And then you assume forms of delta,  the pressure field and the

velocity field and then you add the interfacial conditions which is basically nothing but the

capillary pressure right.

And then you can show that what the velocity difference should be right, okay, for flow to get

unstable  right.  And  for  motionless  configuration  okay the  perturbation  needs  to  have  an

amplitude  which  is  greater  than  the  greater  than  this,  got  it,  okay. So,  Rayleigh-Taylor

instability is seen in many cases also not just in one case it is seen in multiple fields okay.
(Refer Slide Time: 26:46)

Now this is Rayleigh Taylor okay also we can define something called see that the right-hand

side you can also maximize it  right.  So, you get a maximum alpha and then you get an

lambda c which is  called  the most  dangerous wavelengths,  basically  the wavelength  that

grows the fastest right.

So, that is actually is root over 3 that is approximately 1.7 of lambda c okay of the critical.

So, It is about 1.7 times if you are perturbing it at that amplitude the perturbations will grow

okay very rapidly. Now in this  case was the gravity was the gravity was up well  it  was

perpendicular to the flow direction right.

In the case of the other configuration the vertical slow you actually have gravity which is in

the direction of the flow. In that particular case you can show this okay and there it gravity

does not have a significant  effect  on the pressure of the phases.  So,  there you have this

particular expression is satisfied okay. 



So, it is basically ul - uv square on the on this side is only surface tension now which plays a

role right okay which opposes okay. So, a condition for an unstable interface is there for this

particular type of interface which is vertical and gravity is actually in the direction of the

flow,  it is basically called Kelvin Helmholtz instability okay.

So, one is Rayleigh Taylor instability, this is the Kelvin Helmholtz instability both are very

similar. It is just a configuration difference which way the gravity is pointing okay that is

what actually leads to this kind of configurations right. So, you get an idea that when the; you

have an interface okay it is basically the force balance across the interface.

And not  only  just  the  static  force  balance  right  it  is  also  the  dynamic  behaviour  of  the

interface  that  is  very  important.  Because  when  you  do  heat  and  mass  transfer  analysis

specially say you take the configuration when a droplet is a liquid droplet right. Now, when it

is put it to a flow of air right what happens?

The droplet actually should get perturbed this is an interface between droplet and the liquid

and the air right okay and there is a flow there is a recirculation inside the droplet there is a

flow outside right. And there is a huge difference in density this delta Rho is large right. So,

naturally you will develop waves on the droplet surface right.

And these waves can actually lead to this caged type instabilities that is in fact what you see

in your atomization type of studies that there are surface waves that are created and this

actually leads to ultimately leads to break up. Because when these waves actually grow right

they will grow right because that is the most dangerous wavelengths right.

So, they will grow and then they can actually break okay. So, they can actually atomize okay

and give rise to small satellite droplets, got it, okay. So, this is an important exercise that is

because we showed the dynamic nature of the interface now. We showed the static nature of

the interface okay.

And we covered all the equations the relevant equations that goes with it okay and after so in

the next class what we will try to do is that we are going to try to see that how the species

valve now can be entered into the picture and we look at the mass transfer. The mass and heat

transfer side of things this we have looked from the force balance point of view that how the;

So, these interfaces actually do not actually evaporate this example that I showed over here

okay. So, in the next class we will try to do the species balance and move from there, thank

you.




