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Lecture- 56 

Analysis of bistable arches 

 

Hello, we are at the 10th week and this week the first 3 lectures or going to focus on 

bistable compliant mechanisms, in the last lecture we discussed bistable phenomenon in 

general in elastic systems and compliant mechanism being in elastic system it does apply 

to compliant mechanism, we looked at the basic phenomenon of bistability saying that, it 

has two stable points and there is a unstable point which is sandwiched between them so; 

that means, that there is a minimum and a minimum between 2 minima there is a 

maximum, that is what will looked at in terms of the energy landscape and understood 

bistable phenomenon. And then we look at a number of applications number of 

consumer products and really big impacting applications as well we discuss in a last 

lecture and we ended with bistable arches by looking at couple of video clips were we 

see how beams that have 2 stable states without a prestress in them that is the important 

point that you with a preload or prestress. 

You can always get bistability rather easily. So, we saw a leaf having bistable behavior 

that is because, it has built in residual stress surface stress, but even without prestress 

preload you can get bistability in the case of arches and also some shells that we will see 

in the next lectures. But in this lecture let just analyze the bistability of arches which are 

planar arches basically, curved beams which are design to deform in the plane of the arch 

itself. 
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So, let us look at this analysis of bistable arches in this lecture. So, what are bistable 

arches here are an example. So, here we have 2 pin joints basically, the idea here is that 2 

pin joints which are fixed and there is an arch connecting these two that can be of many 

different shapes that will be what we call arch profile. In this particular case, it is very 

close to a sign curve between these two have sign and there also this flaps here will come 

to what; that means, and you can see when we apply force here this one becomes a shape 

like this which is shown here, which is also something like a sign and it flaps the toward 

there have know some shape here, they have also moved a little bit when it comes here 

what was originally here they have moved that way. So, what originally here that is this 

and this have moved apart like this. 

So, here we can apply force here and then apply the force back to switch it back to 

original state or when we have this flaps we can also apply a movement here and then 

switch them, that is I can move it like this get then state it will actually switch in that 

sense they are bimodal bistable arches, but will come that in next lecture. Next now 

understand, the arches and how we can understand or analyze there bistable non-linear 

behavior because, the force this placement characteristics of the bistable structures is 

non-linear. So, it is another one were instead of having hinges we have a inelastic pair 

that is an elastic pair; that means, that it can be modeled as a hinge with torsional spring. 



So, if this is hinge now also included torsional spring to it. So, that there is a movement 

resisting movement as something turns that hinge. Here is another one that does not have 

hinge is a tall. So, here it is just fixed. So, this one is more like this where it is built in 

like a cantilever support and both sides now we can apply the force here, we can apply 

somewhere else also, but the way if it would deformed to another state would pretty 

much remain the same and will see the effect it, when we apply force verses here verses 

there and somewhere else may be we can apply a movement there, because mutually it is 

turning this way. So, we can also apply a movement, but you can the 2 stable states. So, 

this is state 1 state 2 for that, state 1 state 2 for this, state 1 and state for this these are the 

arches. So, in all of these again let us recall that we talked about the energy landscape 

less energy it starts from minimum goes to a maximum comes to another minimum. 

So, this is actually minimum few or that way, this is a stable point there is this unstable 

point there. Now for this one if we also plot the force curve that is important to see this is 

the deformation. So, this is deformation variable displacement variable it is same, some 

variable there and let us see how the force look like which we did not discuss there. So, 

we can see that the derivative of the energy. So, this can be the strain energy when you 

also add actuation then the work potential comes strain energy plus work potential means 

a potential energy right now it strain energy. 

So, now what will plot is the force the strain energy derivate with respect to the 

deformation variable that is this will give you the force. So, here the slope is 0. So, the 

force will be 0 and same thing over here the forces is 0 again because, the slope is 0 the 

gradient of strain energy is the force likewise over here. How do you join these 3 points 

and in relation to the energy one, here we have past to gradient decreasing. So, the force 

from here will go like this, reaches the maximum then decreases and comes back and 

goes like this. This is the force displacement behavior bistable because, this is stable this 

is stable this is unstable this is u s unstable. So, this is stable and stable then unstable 

here because, this corresponds a maximum this corresponds a minimum this corresponds 

to a minimum as well. This is a non-linear behavior and that is what this arches are 

undergoing and that is what will analyze today our starting point is actually post 

buckling analysis. 
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So, if I have a column and such as the one what is shown, here it is a column we call it a 

column whenever there is a compressive axial load that what it has, but a straight beam 

or a straight column. So, we have a straight column, on that is our starting point for 

analyzing things like this. In the previous slide, we saw 3 versions there was only a pin 

joint that the first one and then we had one where there was a pin joint and then a 

additional torsional spring, there was another one which is completely fixed. So, all of 

those can be modeled if we use this torsion spring constant which is this case will have a 

kappa here kappa is equal to 0 here kappa is actually in a way infinity that is there is no 

rotation allow in this point here, rotation is freely allowed in this case, that is why it is 0 

and here is infinite mean rotation is not allow that is the third one we saw in the previous 

slide this intermediate.  

So, we can model if we can model with intentionally it is given as kappa a here and 

kappa b here. So, that we can even consider cases were one end the different from the 

other end. So, in order to analyze such situations we take a straight beam with hinges and 

torsion spring. So, that we can analyze all 3 cases and anything between these actually 

more like an intermediate case that takes the entire a spectrum between one end the other 

end. 

So, this is our starting point for the buckling analysis, and the governing equation for that 

is shown here. So, this is familiar right now, there is no transverse force right, when we 



do this analysis. So, that is why that q that E I forth derivative of w, w is the transverse 

displacement of the straight beam transverse meaning in the perpendicular direction. So, 

it is gone to then something like that a table point here, is that w which is a function of x, 

x is this way x equal to 0 x equal to l. So, the w is transverse displacement of the beam 

by the way w is a function of x fourth derivative times E I, e is hence modulus i is a 

second movement of area for the cross section. 

So, i for a rectangular section is B d q, but by 12 were B is the breadth of the cross 

section, d is the depth of the cross section we have that for usual bending, but now we 

have an additional term which is P times d square w by d x square this is second 

derivative, and this P is same as the axial compressive force that is over there. The 

derivation of that we can either do using variation calculation approach there is an 

another NPTEL course that discus as this or you can force balance as were, but that have 

to look up the buckling analysis to see what were this equation comes from we have e i 

forth derivative of the w plus P times second derivative of W that is equal to 0, and then 

we also have the boundary conditions that W in this case, at x equal to 0 as well as x 

equal to L is equal to 0 because, we have this hinges there is no transverse displacement 

there. And then we also have the other set of boundary conditions, because this is a 

fourth degree differential equation.  

So, we need to have 4 boundary conditions we have 1 and 2 here now we need too more 

this is 3 this is 4 what is that this one says that at x equal to 0 E I second derivative of w 

which is basically movement. So, this is movement one more derivative this shear force 

this is movement that related to kappa a times the slope that point w by d x that is what is 

here, there is a torsion spring when it turned by in angle that angle is d w by d x, because 

slope of the transverse placement d w by d x is our angle of rotation at that point that is a 

slope of the beam.  

So, that times a kappa torsion spring constant will be equal to the movement because, the 

units of kappa you see units of kappa will be Newton meter per radian multiply by radian 

we get back Newton meter it is movement likewise you have E I d square by d x square 

evaluated x equal to l is equal to kappa at the other end kappa b and then slope over there 

minus sign because of the sign convention that we have taken here. So, that is just our 

sign convention, because of the way things turned over here with regard to the slope. 
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So, with these with this differential equation and the boundary conditions, we can solve 

for the moved shapes of that because, that is like Eigen value problem that we have here 

that the homogeneous equation. So, we have if we write it E I and then fourth derivative 

were write it like i v plus P times W double prime is equal to 0, this is like a stomlivi 

problem or Eigen value problem we can get infinite solutions for it and each solution is 

called a mode shape, this is not the mode shape that we use in dynamic analysis or other 

free vibrate analysis is the buckling problem that also has a different Eigen equation and 

for that will have Eigen functions which are mode shapes.  

So, mode shapes are Eigen functions the corresponding Eigen values are going to be the 

critical buckling modes just like the mode shapes and Eigen values which are like natural 

frequencies when you free vibration here, the Eigen values going to be the critical 

buckling load which we call oiler buckling loads. So, here we have that the first mode 

shape looks like this, second mode shape is asymmetric looks like that, third mode shape 

looks like this, and you can get more and more fourth fifth how many hour you have in 

your discretized model we can get if you have n degrees of freedom we can get n mode 

shapes, but you are doing analysis here, you will get actually infinite you can go keep on 

mode 1 mode 2 mode 3 and up to infinity. So, many solutions are permitted by this Eigen 

value problem. 
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So, here we take, we showed 3 mode shapes for the conditions of kappa a kappa b given 

here. Once we have this we can do 2 things with buckling mode shapes; the first one is 

that the as-fabricated stress-free shape that is a key word as-fabricated stress-free there 

are 2 key words. So, when you take an arch you fabricate it in that way. So, there if your 

material bulk material that you have taken to machine this arch that if does not have in a 

residual stress we are not going to introduce any more, to this as-fabricated from that we 

can use c n c milling machine and then cut out. In fact, the one that we showed here, the 

beginning this was done by taking a sheet and cutting out the shape as fabricated was 

like this, and so was this was actually 3 d printed and so was this there 3 d printed. In 

fact, it is later 3 d printed.  

So, as-fabricated that is stress-free in that state are as that is shown, and you that and that 

shape that is a arch profile can be taken as a linear combination of the mode shapes 

which is saw in the previous slide that there is mode 1 mode 2 and mode 3 and so for. It 

turns out that these buckling mode shapes when you adapt them for the arch profile that 

is to make an arch, they are likely to be are most often there bistable those arch profiles 

are bistable not all of them, but they have the inherent properties. So, you can take that as 

a linear combination that is if I take let us I do the straight line here and then say what is 

this that is the height, that is height h that the height h, h of x that is shown here, once 

again x is that way x equal to 0 x equal to L that is span between 2 pin joints here torsion 

spring added spring joint.  



So, there that height that is a arch profile this h indicates the arch profile can be put as a 

linear combination of this mode shapes, this w here w j if as a w 1 w 3 there all the 

buckling mode shapes which is shown here. So, there is that arch here which is now a 

combination of several of these buckling mode shapes, that is something that we can do 

to reduce the problem to a discreet set of variables a j’s; j equal to 1 to infinity if you 

take infinite mode shapes we have to take all of them, but you can choose to do only with 

3 or 4 5 even a 1 if we want. So, that becomes approximate solution to the differential 

equation we had to analyze this.  

So, the arch profile itself it can be taken as a few you can take 1 itself that we bistable by 

itself you can take 2 3 and so forth. Another thing we can do is, that deformed shape of 

the arch that is different that can also be taken as a linear combination of the same 

buckling mode shapes we have small a j is there now you have A J is, this is the 

deformed shape of the arch under loading.  

So, when you apply a load how it deforms that can also be captured using the 

combination both remember, one way arch profile in a linear combination second the 

deformation is also a linear combination then you can take instead of infinite we take 

finite and get on to the analysis. And it is indicated the as-fabricated shape is that color 

that is to one green first mode shape third mode shape second is skip because, here we 

are interested in symmetric arch profile second were is asymmetric. So we go to first and 

third and not the second one. So, fourth one will also the asymmetric and so forth, 

deformed shape that we have here is a linear combination of these three and again we 

have reduced the differential equation problem to a discreet problem to the Eigen 

functions by taking only F finite small a is that define the arch profile capital A is the 

define the deformed profile under loading such as this here. 
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So, when you do that as you apply force is going to deformed as it is shown in this video 

clip, and what we are determining here are the A j’s as a function of the force. So, this A 

j each A j that we have is the function of force, when the force is 0 and as force increases 

to a these increase. So, if we have 3 mode shape there will be a 1 capital A 1 capital A 2 

capital A 3 each of them very differently and the deformed profile will also be changing. 

How do we do that we do that by minimize in the potential energy now, we are going 

from a strain energy to potential energy. So, potential energy is a combination of strain 

energy and then second one which is the work potential WP. 

So, energy has 2 components there is a bending component and there is a c which is the 

axial compression component, and then this term takes care of the spring which is also 

strain energy at the end. So, this also strain energy due to kappa A that is spring and then 

this is strain energy due to kappa B will write this potential energy there is work 

potential which is due to the loading that we have there. So, let us look at each term. 

So, SE b is bending strain energy so. In fact, we should write that it is bending strain 

energy SE c is compressive strain energy and this is the work potential energy WP. So, 

expression for bending strain energy is shown here, EI by 2 o to L d square h by d x 

square minus d square w by d x square. So, basically h indicates arch profile second 

derivative these deformed one that is, if I have the beam like this let us say the beam like 

that from this line, this would be our h as we said already now if this were to deformed to 



let us say the different color let us say this deforms to something like this, then this 

height is w, that is say deformed height that is height is change. 

Now, that is the deformation that is what we have here. So, we have bending strain 

energy and then work potential is negative of the work done by the external force here 

the F is the force how much work is it doing. So, force times displacement u here h L by 

2 minus w L by 2 the difference because, if the midpoint if you take that is by the force 

being applied, were it is verses were it is after a deforms were it is after deforms w h is 

the initial height or the arch profile we get u that is the work potential. And then we have 

the bending strain energy all ready written here and now let us look at compressive strain 

energy that is s and s bar. So, let us say this is s and this bar is missing bar, s is again it is 

an approximation up to a first order for the arch here to take this 1 plus half d w by d x 

square the weight comes is that if I take a there is a arch like this, if I take a point like 

this, simply Pythagoras theorem.  

So, this will be d w that height and this will be d x. So, this one that we need if I call that 

d s that is going to be square root of d x square plus d w square, now you divide by d x 

and takes d x out and then you get a square root of 1 plus d w by d x square d x that 

integral, that square root of 1 plus d w by d x square is approximated as 1 plus half d w 

by d x is square. that is a first order tell Taylor series approximation, and similarly; for 

the changed one, if you take that is initial when w bar initial length is s bar this is the 

change one let us say w bar here is a initial arch. Then you can see how the compression 

the p the force p times that change in the axial that is the arc length of the arch clearly an 

arch like this, if it has to buckle somewhere it is really compressed stores a lot of strain 

energy that is a requirement for bistable phenomenon and then it becomes longer again 

compare to original. 

So, that what done by that axial force in changing this given by this, once you let 

potential energy in order to find these A j is we have to use this equation, this potential 

energy is minimized that is the problem here, minimize potential energy of this whole 

system. So, necessary conditions dictate that the, derivative of potential energy with 

respect to each A j. So, j can be any number you take 1 2 you can go of infinity what will 

do want few things are enough some n. So many equations you get and you have to 

solve. 
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Along the line you have how many our mode shapes you take; you can do that, when you 

do that these, what you get. So, what we have here is the force what we have here is the 

displacement in the case of an arch this is the displacement and the point of application 

of the force displacement at the point of application of the force application of the force 

that again is a linear combination of our A j is and the buckling mode shape. So, here 

you get multiple solutions more than one solution that happens here that can happened 

with non-linear equations here equations indeed non-linear when you do this thing over 

there, the resulting equations in terms of this A j is non-linear which allow multiple 

solutions sometime there is no solution which is there is no equilibrium, but when there 

are that can be more. 

So, 2 solutions are shown here, this is solution 1 and there is a solution 2 which one does 

the arch take when you deformed, turns out that the arch would take what is highlighted 

now there are 2 solutions one you looks more like a (Refer Time: 28:19) either there is a 

straight line the arch actually takes in this particular case what is shown in black lines, it 

follows 1 for sometime switch is to 2 and then goes back to 1. So, it goes as it is shown. 

What is it do that, because of again the stability from here to here up to this point this is a 

higher force and after this point the second buckling mode should be the lower force 

which has to that, then comes here after this is higher this is negative we see 0 is here, 

this is negative this is positive so here this is larger.  



So, it prefers that and goes he takes that list path of resistance if you not exactly that, but 

it prefers the lower force and follows that shape. So, there is inherent asymmetry that 

goes because, the second one here will be asymmetric is a first one symmetric, second is 

asymmetric that is we have mode shapes W 1 and W 2 and then will have A 1 then A 2 

combination of these 2 is over w w 1 of x is first one symmetric w 2 of x is second one 

that is asymmetric. 
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Here, there are some critical points we can solve those equations, but it is not always 

possible when you put this torsion springs and more complicated boundary conditions 

for pen-pen fixed-fixed you can easily do those solutions, but other once when you kappa 

it becomes difficult what could be done in that case is to look at some critical points. 

The critical point here when the force becomes a maximum the other critical points the 

force becomes a minimum, the third critical point were the force reaches the second state 

the force becomes 0 to get to the second stable state. This is the first stable state and this 

is the second stable state between force and displacement. In between there is another 

one, we can called a forth critical point, but we do not needed that is the unstable state 

the u s between 2 stable states. So, here a switching force point switch back force point 

and then the travel that is between, when you have an arch and that is goes to the other 

state here is these where applying the force how much is it that is the travel, that is the 

distance travel that will be from here to here that is a displacement to the other thing that 



we need. And these critical points can be found numerically more easily for this 

complicated situations than the solving for the A j is completely. 

So, we have this thing showed for is s 1 the arch is like this and in between un stable is 

over here, and third stable state here this is force were as, this is un stable this is stable 

this is stable over that 3 states that we look at, in between of our critical points at 

different critical points whether force is maximum switching force switch back force and 

second state first state any way we know that is our starting point which is stress-free. So 

the 3, that is a first one is second one and is the third one. 
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And this multiple solutions we can find showing that it will actually take this one is what 

we said it goes like this, goes like this and goes like that, but if you want you can switch 

symmetrically also. But you have to constrain that asymmetric not a load it will take this 

part, which is shown in the black line here or if you take asymmetric you can see if you 

do not restricted it goes there becomes asymmetric and then goes back to symmetric. 

So, after this it again goes back to symmetric. Initially, it is a symmetric little part there it 

is asymmetric and the asymmetric for the most part then goes back to symmetric. The 

symmetric switching, asymmetric switching here we do something special to prevent 

asymmetric mode shape taking a chance. So, that is done in various ways in the case of 

thing we saw there were two arches like this which are again. So, this was another 

prototype you had this was actually cosine curve if you have another cosine curve each 



of them is fixed here, fixed here, fixed here, fixed here and there is in attachment that 

remedial if you do that does not prevent rotation of that one. So, asymmetric mode does 

not happen due to main symmetric, but even there asymmetric the can still happen, but 

more or less one can prevent it depends on various parameter that takes place there. 
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So, the travel point force is 0 at a stable state we know derived this point we have the 

travel that we already discuss this can also be found numerical that is from here to hear 

how much ever travel is. So, in both cases we can find force equal to 0; the other hand of 

course, this is a trivial solution were A j is are 0 other case; A j is are not where you can 

use some numerical solution were this the variable for as A 1 A 2 A 3, if you take three 

buckling mode shapes and equations that we get by taking derivative of potential energy 

with respect to each of them partial derivative A 1 A 2 A 3 equal to 0, and you can 

update them by taking this gradient in this manner and then numerically solve the 

problem when do that you can find this critical point, switching back switching points 

were it is a maximum thing. 
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And here is the minimum and then will also get the travel point all can be done 

numerically. 
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So, these the maximize if you do you get this critical point, which is shown right now big 

red arrow and then symmetric or asymmetric depending on what you allow that is; A 2 is 

included that becomes asymmetric and A 2 is not there becomes symmetric you get two 

different points. And the other way, that when it actually goes to the 0, where it exactly? 

There are multiple solutions for A 2; we can find them by equal in the second derivative 



to look at this stability. So, whether it is just stable or not we can also include that, I can 

derivative called an energy which is a stability check for it. 
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So, we can find those points as well and it is a comparison of the finite element and 

critical points, critical points this joining does not actually makes sense we only know 

that, there is this point and this point and this point. We just happens to joins we can see 

how it varies and this is the finite element analysis result and it is pretty good due to 

solution, if you do it right we do get the points in between is just imagination it goes like 

that, our interest is the switching force how much force is there to switch from first state 

to the second state and how much force is needed to switch back here it is 0 in this case, 

force at apply in the opposite direction that is why these negative and this side it is 

positive. 
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And we can take a lumped model in this case split tube flexure is taken which you had 

talked about earlier we talk mode elastic pairs and we can physically realize this split 

tube flexure is basically, a tube that has a small split all along. So, the tube goes like this. 

So, this one if you join two things there, you get a torsion join there boundary conditions 

for at and it is stiffness in various directions, are given the multi axial stiffness. So, that 

can be modeled as a transnational spring the axial direction and translation spring the 

transverse direction and then rotational stiffens all that correspond to this, we can use a 

lumped model get all those parameters that are needed and use them in our analysis. 

(Refer Slide Time: 37:37) 

 



So, that we can actually synthesize these things real 3 d printed 1, wean analyze using 

this arch analyze we just discussed we are to the mode shapes and buckling mode shapes 

and look at that. 
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So, what we have discussed, is the post buckling analysis of a straight beam gives us 

buckling mode shapes which can be used as it is in the as-fabricated shape and without 

stress, we can make them as it is and then can strain them, constraining we can do in 

multiple ways we can do like a fixed connection or a pin joint without any torsion spring 

or a pin joint with torsion spring we torsion spring constant changes what you do is, we 

have to solve the Eigen equation that we have get the buckling mode shapes.  

Once you get them there useful in analysis as well as the in synthesis we saw both 

because, we can express the arch profile as a linear combination of the buckling mode 

shapes and we can express the deform shape of the arch also as a linear combination of 

the buckling mode shapes small a is for arch profile big as that lower case for arch and 

then upper case as for A j that we had for the deformation and then we can use the 

principle of minimum potential energy to formulate the equations and solve them. 

Solving them is not easy that is why we have explained a critical point method, we get 

the critical points and then try to get the enough information for as to analyze 

approximately only have few points and critical points we can imagine shape like that, 

but in general it will be a smooth shape. 



We also discuss how we can include the symmetric, asymmetric once physically as 

symmetric be prevented by constriction there that we have were restriction of the middle 

for a cosine arch that we talked about, but we can analyze both and we can also use them 

to synthesize rather, bistable conditions for bi for a given arch in terms of it is length and 

cross section and so for, can also be discerned that is we can understand when we get the 

bistability when we do not. For that let us look at one thing here, if I have this is the 

force and this is the displacement if I have force displacement like this, this is simply 

called as a snap through this is not bistable, because one force is 0 after that force is not 0 

for yet to be 0, this not be external force required which could actually be like this, then 

we have 0 and 0.  

Sometimes what happens is, this will be just touching, that is; I will just use a different 

color it could be that it just touches like this, that will be the limiting case such 

conditions, bistable conditions can be discerned from this critical points that we 

discussed. So, in the next lecture we take this analysis and then show how we can 

actually solve some applications were we use this arches to real applications and how 

this analysis helps us in actually synthesis are designing. 

Thank you. 


