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Hello, we are in to the 8th week of this class and this week we are going to discuss a new 

design technique which is based on a concept that we introduced this week, which is 

non-dimensional analysis of compliant mechanisms comprising a slender beams. We 

have been talk about beams as being the crucial elements for plainer compliant 

mechanisms are for that matter even for special or 3D compliant mechanisms.  

Now, we will use beam elements or beam segments that comprise the compliant 

mechanism to tell us something about non-dimensional that inherently exist in beams 

and how that extends compliant mechanisms and how we can use this non-

dimensionality concept to design compliant mechanisms. Once you have a problem like 

we discuss last week we should be able to select compliant mechanism, redesign it or 

even redesign or just design annual that is design compliant mechanism newly for a 

given set of user specifications is what we look at and that comprise the 4th design 

technique for compliant mechanisms that we are discussing. 

So, let us look at this non-dimensional a portrayal of non-linear elastic response of 

beams. So, the key words now are it is non-linear elastic response not just linear and we 

are going to non-dimensionalize the response. In this case elastic response, because 

compliant mechanisms we want to limit it elastic response because it has to be repetitive. 

So, if there is plasticity and some permanent deformation it will be 1 use 1, 1 use 

mechanism that is not the intention of any mechanism or most mechanisms. So, we want 

to retread our self to elastic regime and then talk about this non-dimensional analysis, but 

it is non-linear mainly because of large displacement analysis. So, let us look at the slides 

and then recall first how the deformation comp cantilever beam that is simple as been 

think of. 



(Refer Slide Time: 02:30) 

 

So, we have cantilever beam if it is linear analysis verses non-linear analysis, if it linear 

this point will not have any displacement in the axial direction, in this direction should 

not move whereas here you can see when you consider non-linear or what we call 

geometrically non-linear that is we try to write the equilibrium equations in the deformed 

configuration rather than the original configuration. We already discussed in lecture 

number 13, 14 where we considered the large displacement of x on compliant 

mechanisms, today we will revisit to find some non-dimensionality in the non-linear 

deformation of compliant mechanisms. So, if have linear there is no axial displacement if 

there is non-linear the point that is a free tip or loaded tip of the cantilever beam will 

move both in the axial direction as well as transverse direction. 
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So, let us look at what happens if you just consider linear analysis first in which case we 

directly move only here no of movement in the axial direction, we all know or most of 

you may remember that is W L that is a transverse deformation at the loaded end that is 

given by f l q, if this is the force is F, length is L and young’s modulus E and second 

moment of area I if we have W L is given by f l q by 3 E l now, it is easy to non 

dimentionalize this you just bring W L and below that you put this L. 

So, that becomes L square now. So, we get F L square by E I that has to be non-

dimensional because on the left hand side we have non-dimensional number, that is we 

are normalizing transverse displacement with the length of the beam W L that is this 

deformation are displacement we are non demensionalzing using the length of the beam 

itself, this is non-dimensional. If these non-dimensional this also has to be non-

dimensional let us verify that. So, force is Newton L square that will be m square meter 

square and then E young’s modulus then be Newton per meter square and then second 

moment of are that will be meter to the forth. So, over all what do we get this Newton 

newton canceled meter minus 2 M 4 that becomes M 2 M power 2 that becomes again 

non-dimensional. 

So, f n square by E L is non-dimensional. So, this is no big deal that we can easily see 

that when you have elastic response in this case it is transverse displacement that can be 

easily non demensionalized sometime call it normalization also, so there is really nothing 



unusual about this. The fact that this non-dimensionality holds even in the case of non-

linear deformation is interesting and that is what we will consider here, let us say large 

displacements analysis let us revisit it very quickly. 
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So, what will be the equation in the case of a cantilever beam which we discussed in 

lecture number 13 is that we take the curvature as it is greater change of slope along the 

arc length of the beam that is this is if we recall our arc length s. So, d theta by d s and s 

is slope any were. So, that is slope that is theta, so d theta by d s is there on the right hand 

side also we take in to the fact that if there is an axial displacement of the free tip is 

denoted by (Refer Time: 07:00) bell that has to be subtracted in writing moment a right 

hand sides. 

So, we have when we take analysis we neglect in the denominator for curvature d theta 

by d s is this divided by 1 plus d w by d x square whole thing rise to 3 over 2. Now, we 

say the beam is not bending much meaning d w by d x is not a whole large. So, it is 

square will be negligible compare to 1 and that is what we get. So, whatever was in the 

denominator we I case it zoomed out show, we just say that what the denominator we 

neglected. 

So, that becomes a linear and we also neglect this u L here that is a small displacement 

large displacement, it is non-linear equation were gone through earlier, so we quickly go 

to what we did. 
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We start with this what is called in elastica equation and differentiated and say that this is 

similar to Kirchhoff pendulum with large oscillations whatever equation we get that is, 

what we have for the cantilever beam we had discussed all this at length that called 

undulating elastica. So, we differentiated, little manipulation and integrate get this 

constant we evaluate by putting this slope at the loaded end that is theta L here. 
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So, to evaluate this constant C we substitute this at s equal to L which case the curvature 

becomes 0 that is we can get the C theta L and we know the equation, we also assume 



that there is no stretching of the neutral claim and neutral axis of the beam and that gives 

us the equation, what was the differentiate equation? Now turned to be equation in just 1 

variable which is theta L, may integrate theta L will you the 1 just scalar equation of 

length equation. Now we notice here what we had actually put at that time also in blue 

color which is what we called eta is eta that we have here is F L square by E I is exactly 

the 1 that we had when we did the small displacement analysis here, for determining 

theta L this is what again comes out because on the left hand side here is all non-

dimensional because will angles are there right hand side should be non-dimensional 

which also already verified that this is non-dimensional. That is we put it in big bold 

letters at that time now we did change variables and talked about the elliptic integrals this 

equation. 
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Now, with a change of variables that are given in these slides again I am going through 

quickly because we had done that in detail some time ago in this course and with all of 

these things we had finally; gotten these things to using these elliptic integrals of first 

kind and second kind complete and incomplete. 
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We had gotten the solution finally, that W L by L. 
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So, that is we are looking at this W L by L is given in terms of the elliptic integrals 

capital F first kind capital E is second kind, complete when the angle is pi by 2 like this 

and incomplete when it is some phi naught which is theta L equivalent with the change 

of variables and then second kind complete and incomplete. If we notice in this W L by 

L which is non-dimensional, so clearly what is on the right hand side is also non-

dimensional for what does it depend on we see eta or familiar F L square by E I that is 



there and there elliptic integrals, but then we also see this p. So, we see this p and this phi 

naught we see this phi naught and again the same p and phi naught. So, what do they 

depend on? 

So, phi naught at least in our rotation what was correspond in to this theta L with the 

change of variables that depends on theta L, what about p? The p again depends on theta 

L. So, it is all the same variable different forms and also we have this equation it that was 

our length equation let me put a box around it this equation is what we use to compute p. 

So, if we know value of eta we compute p. So, in other words what we find is that this 

entire non-linear equation for different values of p which again depends on eta it is 

basically function of eta itself. 

So, this W L by L even in the case of non-linear large displacement situations also it is a 

function of eta it is a non-linear function, because as I change in eta there is F where I go 

from small value of F to large value of F I am going to get different displacement of this 

is non-linear, but even that non-linear function is a function of a single variable eta 

which contains the force, the size, that is length L middle property E and cross section 

property which is second movement of area, all the 4 things are in one quantity and that 

quantity is what determines a non-dimensional displacement and the same thing is true 

for the axial displacement also. 

So, axial displacement if we see again it depends on eta and then p, p interned depends 

on eta. So, everything is a non function of eta. So, what we find is that non-dimensional 

transverse displacement or axial displacements are functions of eta itself that will be true 

for any point. Now we are looking at the loaded point, but instead if I take this point at 

this point at this point 1 can verify in this analytical solution that all of those are non-

linear functions of eta itself, eta has force as I vary force that is going to change, but still 

it depends only and the combined value of this F L square and it by E I. 
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So, we can plot it now. So, we actually did that at the time itself we have eta shown here 

and we are showing this W by L this is the red curve, that is transverse displacement for 

the loaded tip and then axial displacement normalized or non-dimensional with the 

respect to L and then linear 1 is also shown here. As we can see linear 1 is tangential to 

non-linear as we expect we do not see that axial displacement for that we have to zoom 

in over here and then will see that that is actually because has to be tangential like this 

with x axis because small displacement case u L is 0. 
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So, it should be a line like this and that is what is it is again tangential to the non-linear 

case just other transverse 1 is. So, we find that once we have a curve like this. So, 

whenever we have eta value for a beam no matter of what the force is, what the size is, 

what the length is, what young’s modulus, what second moment of area cross section is, 

if I know the value of eta let us say I have a value of eta something like that I can 

immediately find out what this u L is and what this w L is non-dimensional form and get 

it. 

So, once you have these curves no matter of what beam you take, what cantilever beam 

you take, transverse force applied at the at the free end and not the fixed end nor the 

loaded end but free end, whatever may be the case meaning that whatever is the length, 

whatever is the force, whatever is the material property E, whatever the cross section in 

fact, shape of cross section on to does not matter because I is what matters when you 

take that when you have this curves we will find that the displacement is readily 

available is large displacement, you can keep on increasing eta whatever we have this 

and we can find it there is no need to calculate again. 

So, these things can now be called maps, in a way there Elastro static map or we can say 

Keneto elastic because there is a Keneto matrices involved here it on a displacement 

keneto elastic map of the deformation and with this non-dimensional factor. 
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Now, what happens if you plot theta L that is the slope at the loaded end verses eta, we 

see that at eta increases the slope is also increasing it increases very rapidly in the 

beginning after about 40. 

So, it is stabilizes to something is almost 90 degrees now very close approaches 

symbolically, but we can actually say if for a beam eta value is large then is bending 

more because is the cantilever beam here we talk we about. So, as eta increases we will 

have more and more bending unit. So, we can think of this theta L as well as eta is an 

index of bending eta smaller means that it is not bending much eta larger beam side it is 

bending a lot more, and you can see that eta can go from 0 to infinity of course, when 

you approach forty itself we are very closer to 90 degrees that is the beam has actually 

become almost vertical like that almost never be completely vertical will approach there. 

So, we can see how a eta indicates the index of bending and again this is not whether the 

beam is short or longer made of flexible material verses stiff material, it is just that a 

combined effect of 4 things force length material property e and a cross section that is 

second moment of area all together put in. So, that all again goes back to this thing being 

dependent on just eta and it is the length not changing as the beam bends is assumption 

made in doing this. 
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Now, if we were to do finite element analysis again non-linear finite element analysis we 

find that at least in this case again if I put W L by L verses eta these blue things are done 



with finite element analysis. We see that yes there lying on the curve, but if we zoom in a 

little bit we find that there is a discrepancy it is a small there not exact lying on it. 

So, analytical solution is correct because you have done that if the assumption made that 

it does not made stretch, but here when that there it does happen there is a little bit 

stretching even for a cantilever which finite element analysis capture. So, we realize the 

limitation of the assumption, but to look at this is 0.69.7 if I were to take a eta value 

some were here instead of this being that will be that. So, there is an error who we know 

what this error is because the axial a stretching. 
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Now, instead of cantilever beam now let us move on to a fixed fixed beam when you 

take a fixed fixed beam we find that if there is this eta again theta is same F L square by 

E I, now if we what to do midpoint displacement. 

So, have the fixed fixed beam fixed at both ends and the force is applied and the 

midpoint transverse force now, we have to see what happens to displacement when it 

deforms like this what is this? That is let us call it we made here midpoint as indicated 

again non demensionalized or normalized or non demensionalized beam it by L how 

does it go it looks like for a particular eta. So, we do not get the same value. In fact, there 

is a range. So, when you put all these dots here will come back to what this s is we put all 

this dots there not lying on a single curve like it was a apparently for on cantilever beam. 

In fact, cantilever there was a difference, but here we get a whole range of values. 
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So, we get a number of points like this that is each point here refers to a finite element 

point. So, every 1 of them we have indicated now it looks like we get an entire space 

here. So, it is not a single curve, but entire space. Now, this can be really called a Keneto 

Elastro a static map. So, this whole thing it can be anything here. So, we can just really 

fill that an. Now, what happens is that if I take a particular value let us I take eta equal to 

4 then this entire range of values is non-dimensional displacement. So, what does this 

mean? So, that there may be more than 1 non-dimensional parameter here for us to fix 

this problem, earlier we said that this non-dimensional display for a cantilever is simply a 

function of eta, but now giving eta is not enough because there is a range here. 

So, is if see the difference for a cantilever beam we said that this displacement axial are 

transverse they are simply functions of eta, but here for a fixed fixed beam that is not 

true for a fixed fixed beam what is happening is if we deforms like this we are saying 

that, this displacement is not a function of eta alone because for the same value of eta a 

several values of non-dimensional cantilever beside little bit, but here it is more 

pronounced. 
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So, what is wrong here is the question that we ask and in order to see this we want to 

look at, we can do with a analytical 1, but that gets little involved and we have already 

done that cantilever beam to show that the function itself is dependent on eta as a whole 

were as for a fixed fixed beam that does not in to work is something wrong here. If you 

look at analytical solution fixed fixed beam we would find that it is still a function of eta 

alone, but we do not see it when we do finite element analysis over here and try to or 

even experiment whichever were we do we get n number of points and getting the entire 

a map here. 

So, in order to resolve this instead of doping analytically let us do it numerically by using 

beam finite element. So, what we are showing here is the 6 by 6 stiffness matrixes beam 

finite elements. So, if I have a beam element in 2D, we have beam element it can be even 

in client. So, let us actually take it in client this is the node 1, this is node 2 we will have 

6 degrees of freedom. So, there will be displacement we can call it u 1 and v 1 

displacement x direction y direction and the rotation here that is call it is theta 1 and then 

this will be u 2 and v 2 of the second node we take it 2 node beam element and then here 

we have theta 2 rotation. So, we have 6 degrees of freedom that is so we have 6 by 6 

matrix here.  

The symbols here of familiar young’s modulus area cross section this is young’s 

modulus area cross section, length of the beam, I put this in blue to indicate that that 



accounts for the axial stiffness E A by L or A E by L and remaining things that is the 

things that I will circle this one, this one and all of the this, 4 by 4 that we have that 

corresponds to the bending here, this 4 by 4 and this 2 by 2 we have to put it blue this 

corresponds to bending. So, all of this is bending, since it is bending what we see is I 

second movement of area rather than area of cross section. 

So, we have both axial and bending taken into account because we believe that it reflects 

reality better than the analytical solution because analytical solution for the E is of 

solving we assume that the length of the deformed beam does not change. Now, we do 

not make that assumption we take this. 
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So, once we have a this stiffness matrix for a beam element or a segment, what we do is 

we substitute for A and I assuming rectangular cross section, where rectangular cross 

section we just substitute Ebd and I we have b d q by 12 and 12 was there got cancelled 

and we get this. 

So, we taken this 6 by 6 matrix just substitute for area of cross section and second 

moment of area that is A and I, then we take something out we factor this out because we 

see something E b d q by l square w take it out leaving something in this matrix. 
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And then we also define something all slenderness ratios, slenders ratio is defined as L 

by d length by depth. So, d is the depth of the cross section which is in the plane of the 

deformation of the beam we defined that. 
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So, from previous slide to this all we did was we just L d square we multiplied by L that 

becomes s square divided by L, so we get s square by L here define this slenderness 

ratio. 
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And then we factor this proportion so what we do is we have this now we just say the 

beam if there are let us say 1 long beam we break it up in to smaller beams. So, we say 

there is some average breadth, average depth, average young’s modulus, average length 

different beam segments were long beam I can break it up in to smaller piece longer 

shorter whatever. I take average take proportion of each of these beam elements I have 

this 1 will have 6 by 6 were take this one, this one and this one, I just make this 

proportions b alpha b times b bar and same thing with d and E as if it is going to be made 

of different material properties, we do not do that but in general it could be made of 

different materials. 

So, we have put that also in an average sense and the length itself, length can be different 

for different beam segments will we do this. First of all this slenderness ratio also will 

have this s bar and then this alpha L and alpha d or the proportionality things for 

different or multiple beam segments. 
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If we do all this what we get something like this. Now, we have all the proportionalities 

introduced here and inside as well and then we look at the force displacement 

relationship. 
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So, we have this stiffness matrix now which we have done all this things non 

dimensionalize, if we see inside except the average L that is there over here every were 

else it is all proportion which have just numbers and the here also we have this, and this 

inside all average values and these are the 6 degrees of freedom and corresponding 



forces or moments. Corresponding to translations we have forces that is this, this, this 

and this and corresponding to the rotations we have moments. We will see how this gives 

us a way of finding this non-dimensionality for general boundary equations of the beam 

and not just for cantilever we will pass here and continue in the next lecture. 

Thank you. 


