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Lecture — 35
Shape optimization

Hello, we have discussed topaz optimization for compliant mechanisms and the
advantages, limitations, complications and of course, it does give a Topology all the time
with or without this hinges either point flexures, edge flexures but does give a
mechanism and we have ways to counter act the point flexures and edge flexures by
going for restrained relative rotation are some other base of doing a reducing a erosion

and dilation.

But Topology is not ultimate thing for the eventual design of a compliant mechanism,
shape also matters. Topology of course matters the most, we keep return in to that in this
a course and whenever we talk about compliant mechanism the same breath you talk
about Topology atomization because having the connectivity in the right way is very

important for a compliant mechanism.

However when you go to practical problems, the shape needs to be tuned, the shape of
the beam segments most of the compliant mechanisms do have in them beam segments
without that (Refer Time: 01:35) 2 d or 3 d instead of just having beam segments you can
also have thin plates and shells, but they are still slander elements which are one

dimension wise they are thinner compare to other dimensions.

So, the shape of those things actually needs to be tuned to meet the manufacturability
constrains or strength requirements are just available form because unless you have 3 d
printing (Refer Time: 02:04) manufacture is taking place now, but you want to use
traditional manufacturing methods where the shape is very important of the segments in
there. So, let us talk about one publication, one paper where the shape optimization was

done for compliant mechanisms.
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So, let us look at (Refer Time: 02:26) mechanism before that let us actually look at this
paper, that talks about what is called Freeform Skeletal Shape, there is a particular word
that is used to call Skeletal Shape. By shape one can have lots of different interpretation,
one is that if I have a beam element let us say | have beam element, whose neutral plane
and neutral access | am showing here, | can have the width profile of that; that is one
kind of shape optimization. In fact, that thing people would call a size optimization
actually rather than shape optimization because it is a size that width profile is what we

are trying to adjust, that is more like size.

So, we are not talking about that type of Shape Optimization, we are talking about
something called Skeletal Shape, that is the a compliant mechanism that has beam
segments, if you draw them all with this line like this you would actually see a skeletal
form of a compliant mechanism and that is what we are trying to optimize here. So, this
is in general of mechanism design, volume number 125 and page 253 you can go and

read in fact, we are going to discuss this paper in detailed in this lecture.



(Refer Slide Time: 03:52)

Let us first look at what do we mean by Skeletal Shape optimization, so | am showing
two structures here, both of them are identical in a way except a little portion here it is
like this, let me use a different color. So, here it is little rounded whereas, this is straight
like this and same thing here little straight here corner, here little rounded that is what we
have essentially there are holes, there are four holes in this structure this is what we can

call it Topology optimization or Topology design.

Other one we say that there is a frame, so let me use now a color that we can easily see,
we have a frame out of outer frame, in this outer frame let us say that | have decided to
connect this and this because Topology told as that if we connect these two, you basically
make the hole four and then if you connect this, you make hole 3 also and then if you

connect this to the frame you make hole 1 and hole 2.

So, the Topology can be obtained by putting the holes or identifying this connectivity
points and joining them. So, if | join this | create hole 4 that is that one and then by
connecting this I create hole 3 and then | connect these 2, | create hole 2 and hole 1. So,
now, the shape of the holes also matters, topology optimization the way we call it, it not
only gives the Topology, but also gives the size and shape and everything, the shape

holes also come as we have seen, but instead we can talk about a skeleton.



So, if I were to draw for this Topology as it is drawn below, if this is the rectangular
frame that we have; | say that this is Skelton of this one. Now, this is not the skeletal in
the geometric modeling sense, but basically we are looking at beam segments, the frame
is also a beam segment inside was the beam segments, we have those if we have
optimize those we get in a way a complaint mechanism design or a form by just playing
with the shape of these beam segments, if | were the given outer rectangular frame, that
is what we mean by Skeletal Shape optimization. Skeletal Shape optimization or
compliant mechanism to distinguish between this and what people normally call for
beams and bars (Refer Time: 06:52) cross section profile that also can be ensured as

shape optimization.

So, what we will do is look at the paper that | have just sited and discuss that. It is free
form meaning that you can have any shape that you want and that is the idea. So, once

again this is journal Mechanism Design, so we can get this paper and read it.

(Refer Slide Time: 07:21)

So, what | just discussed is over here, what we have been by Skeletal Shape
optimization. Again the motivation for this comes from this point flexure that we have
talked about 1 node hinges. Now everywhere we have these joints whether you do with

beam elements or continuum elements, we have the same thing. In fact, | would like to



point out one other thing here. There is a little rigid potion stiff portion here, which is a

check a board pattern.

The check a board pattern is a problem in stiff structure optimization, where you get
alternate black and white regions as it occurs in a chess board or a check a board and that
is kind of similar to the one node hinge that we have discussed and there again we can
come up with the intuitively explanation as to why the check a board occurs? Some
people argue this to be in numerical instability into (Refer Time: 08:20) that is also
correct, that is a mathematical way of saying intuitively the check a board that it gives is
actually stiff and algorithm again exploits a loop hole in finite element frame work and
gives you what happens to be numerically stiff structure, but is not something you can

easily manufacture, some that we do not want to have.

Whether you take beam elements or continuum elements, the topologies looks the same
pretty much and the shape also in a way, but what we want to avoid here are things like
this here, we do not want them. So, we do not want things that have this narrow fixtures
and that happens all the no matter what problem you solve, again beam elements that is
the frame problem this take a ¢ here and the d which we have gotten using continuum

elements, they both look the same, so it does not matter which when you take.

(Refer Slide Time: 09:27)
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Fig. 1 Two types of shape optimization (a) optimizing the
boundary shapes of holes (b) optimizing the skeletal curves of
the segments. Both are capable of generating the same struc-
ture if the width of the segments is varied along with the curves
in the latter.
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One other example where we have in fact, we have supports provided, to supports here
did not want to connect because the force and displacements are over here, it takes this
supports whatever beam does that was the continuum does. That is so much identical
thing does not matter what type of element he choose we get a same design, but hinges

seem to be a problem.

Let us say you take it topologies like this, either this or that for a given problem and then
try to identify these segments and try to tweak their shape to improve upon a
performance. So, shape optimization comes after you do topaz optimization, you can
assume a Topology like you have to do with (Refer Time: 10:06) body model based
method or where you start with a rigid body linkage and try to come up with a equivalent
compliant mechanism and try to optimize that or synthesize that that is one way or if you
assume a Topology then you can do shape optimization as will discuss and try to get a
complaint mechanism that satisfies the functional requirements as well as some of the

performance requirements.

(Refer Slide Time: 10:40)
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atural to use the coordinates of the control
variables in shape optimization. One of the
es of the Bezier curves is that the curve

obtained. It
points as th

always lies inside the convex hull of the control polygon. This is
attractive from the viewpoint of applying constraints to restrict the
curves (o prescribed geometric domain. Another attractive prop-
erty overcomes the need for re-meshing afer every iteration
which is one of the main difficulties in most other shape optimi-
zation methods. This is because the points on the Bezier curve can
be directly used as nodes in the finite element beam model. Fur-
thermore, if uniform parameterization in f is used (i.¢., from point
10 point, A7 is constant), the points on the curve are distributed
such that more points (and therefore nodes) appear in the regions

of large curvature. This can be explained as follows. The curva-
ture ¢ of a parametric curve P can be expressed as

PP
e (3)

§

where P and P are the first and second order denvatives of P with
respect to the parameter ¢ respectively (the cross product of them

So, in this particular thing we are looking at using Bezier curves, the Bezier curves as
you know there are some control points there is one here another one there, another one

here, another one there. So, control points are the straight line one that we have is



actually control polygon and from there we can draw the Bezier curves. It is a free form
curve or variables are only the x y coordinates of this control points and everywhere else
we get the uniform or smooth curve, which is a cubic in the case of Bezier curve as
(Refer Time: 11:20) whatever Bezier curve is a simplest one. So, the entire curve of a
beam segment such as the one we discussed in the Skeletal; free from Skeletal Shape
optimization, we only need if the n points are fixed which are very well in many

problems, then we are dealing with only two control points this and this.

So, with these two control points we have in a 2 d problem, two variables there x y
coordinates, another one two variables x y coordinates. So just with four variables, we
can do the problem; we can get the shape of this. So, we are using a feature in geometric

modeling adopting it for compliant mechanisms.

(Refer Slide Time: 12:15)

3 Problem Statement

The segment-wise, freeform shape optimization problem for
compliant mechanisms is presented in this section. The design
variables, the objective function, and the constraints are described
in that order

3.1 Design Parameterization. The prmary criterion for
choosing gn variables is that they cause smooth variations
! compliant segment. This will ensure that design
derivatives can be easily computed for gradient-based optimiza-
tion methods. The number of vanables should be small enough
but should be able to cover a large design space of shapes. Bezier
curves satisfy both the requirements and are widely used in mod-
eling curves. They are also simpler to use when compared to more
sophisticated B-splines. A cubic Bezier curve in its parametric

form is given by
P(1)=[By(1) By(1) Bslt) Bs()] [Qe Qu Q Qi
(1

where P(1) contains the x and y coordinates of a point on the
curve corresponding to the parameter 7 which takes values from 0
to | from one end of the curve to the other end; B's are cubic
Bemstein's basis functions given by

By =(1-1) ]
Bi(1)=3(1-1t

teria used in [19] and [20] are used in this paper. The intent behind
them is o achieve optimum balance between a flexibility measure
and a stiffness measure because compliant mechanisms should be
flexible enough to deform but a counter measure to prevent ex-
cessive, unbounded flexibility is also required The mutual strain
encrgy, MSE, is one criterion of flexibility as it is numerically

equal to the output displacement. The strain energy, SE, is a mea-
sure of stiffness which is essentally the ir
tiplied by the input force. Maximizing M.
nism most flexible, and minimizing SE maximizes the stiffness
The two measures can be combined in several ways but only two
are shown below

minimize:-MSE/SE (3a)

MSE*

minimize:-sign{MSE) ——— (56)
: SE

These objective functions are shown to possess unconstrained,
non-unique, local minima in the topology optimization problem
[20]. Such unconstrained minima are not likely to exist for the
shape optimization problem, which as stated earlier, is a second-
stage problem after the topology optimization stage. The shay
optimization smply aims to improve upon the topology solutions
by allowing for substantial shape changes that are not considerew
in the topology o tion. However, the existence of local u
constrained minima for shape optimization is also not completely

So, if we do that we can use our usual objective functions that we have already obtained,
so let us say | want again go to our MSE by SE formulation, now there is no problem no
one node hinges or anything point fluxions here because we already are dealing with

shape rather than defining Topology.



So this point fluxions are not going to occur because we are not using those indicator
functions and usual Topozation approach; you just design the shape of the thing.
Assuming the width of the elements, without this beam segments minus MSE over SE or
sign of MSE, MSE square over SE this another small formulation which we have been
discussed there are many such formulation in the literature, we did not discuss all of

them.

Let us look at this 5 a minus MSE over s e would like to minimize. If there is objective
function, we can use the concepts of Bezier curves which are cubic are as it is showed
here. So, all the points p of t are given by this hermit polynomials and these are the
control points Q 0, Q1,Q 2, Q 3 the x y coordinates making at the cubic, these are the
ones that we have the Bezier basis function that we have, so we can get that and define a
problem like this.

(Refer Slide Time: 13:42)
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Fig. 4 (a) a compliant gripper (b) Schematic of the left half
along with the Bezier polygon

So, let us I want to make a gripper this is a symmetry boundary condition here force is
applied when | do that, output displacement should be here let us say gripper problem

and | have identified two segments, there is a segment 1 and there is a segment 2.



So, for the segment one this point is fixed, that point is fixed, this point is fixed, for
segment 1; we need 2 points that are fixed. So X ¢ 1,Y c1, Xc2,Y c 2 become the four
variables for this entire shape and likewise output displacement point is fixed, input force
point is fixed, two ends are there shape of this would be the second segments, that will
also have 2 control points which are not shown here, so 4 variables 4 plus 4; 8 variables,

| have to do shape optimization now.

Since Bezier curves we know all the segments are come, advantages of this Bezier
polygon is that when you parameterize this curve, there is a parameter t that is go from 0
to 1, if we take it uniformly you will get this distribution of nodes along the beam, here
we can and as well use the beam elements; beam finite elements, wherever the curvature
changes a lot our curvature is high more points coming, where it is more or less straight
like this portion will get very few nodes. So, automatically if you have this parameter t
varied uniformly between 0 and 1, let us say 10 points you take it takes 0, 0.1, 0.2, 0.3 up
to 0.9 and point 1.

These points will be distribute in such a way that, where there is more curvature more
points will come, where there is less curvature more straight fewer points will come
automatically. So, we can do that very easily with this Bezier discretisation, one other
problem that can occur is that; this Bezier polygon see if the control polygon this lines

intersect you can get actually a loop.
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and SE are both functions of x, ¥y, X3, and y;. The objec- 4
tive functions in Eq. (5) are plotted in Fig 5 where only one s
variable (y;) 1s varied, It can be seen that the second objective 3
function possesses an unconstrained local minimum. It was also 2
found to have an unconstrained minimum when both x and y
coordinates of the second control point were varied [32]. Although 1
such constrained minima could exist for shape oplimization prob- ® \ @
lems, some constraints cannot be avoided, and are in fact neces- oL« o N
< & . ¢ 2 0 2 4 L 10

sary to make the problem always well posed. In the presence of X
constraints, maximizing MSE itself can give good local con-
strained minima as shown in Section 3. ) m=2.5,4=25,1g¢ = 09167

Fig. 6 lllustration of loop avoiding constraint (a) without a

A loop has to be avoided in a compliant mechanism that does not make sense because
eventually we are going to make it out of a sheet of material there is a continuum thing.
So, having a loop like this would not be referred but there is fortunately a constrained
that we can put, what can be called Loop Avoiding Constrained, that again comes from
the geometric modeling literature and we can put a length constraint also, we can put a

overall how much lengths.
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P 33 Constraints
e Length Constraint. A constraint on the length of the compli-

1 | ant segment whose shape is optimized is ofien necessary in order
| to compare different shapes on the basis of a uniform measure
The length constraint also has economic implication in terms of
matenial used. Formulating the length constramt is quite straight-
forward in the Bezier representation and in its beam element

based finite element implementation used in this paper

Loap-Avoiding Constraint.  As the coordinates of the control
polygon are varied, the Bezier curve can sometimes cross itself
creating a loop. Such a loop is not meaningful when beam ele-
ments based finite element model 1s used, as it will not correspond

35 = T . 3 5 % 10 Um physical model cnr{ccll_\ The constraint ‘h‘v‘a\md a loop can
y2 be formulated using the following condition [33]
Fig. 5 Visualization of the objective functions by varying only L i | ] M ®
one variable 3 39
256 / Vol. 125, JUNE 2003 Transactions of the ASME
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So, we will be go back here, when | get this, how long do you want it? What is upper
bound may be a lower bound, lower bound of course is joining from here to here, that is
also fine if their combined that straight segment here, straight segment there and that is
optimal we can take it. So, we are looking at a gripper such as this one, there is that and

there is this.

So, that is that is how it is taken is there a better shape is the question that we are asking,

that will give you a better value of the objective function.
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ent segments. The permissible region for the control polygon
of the segment in bold line is shown as a dashed line.
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where m and n are given by

Q= Qy=m(S-Qy)

Q= Qy=n(Q;-S)
with § denoting the point of intersection of lines QyQ; and Q;Q;
in the Bezier control polygon It is illustrated in Fig 6 with two

cases showing no loop (/.a.c<0) and a loop (1.a.c.>0) respec-
tively. When La.c. is zero, it indicates the occurrence of a cusp

Intersection Avoiding Constraint,  When two or more adjacent
segments in a compliant topology are optimized, there is a danger
of intersection among them. This can be easily dealt with because
Bezier curves always lie within the convex hull of their corre-

plied to ““constr™ function using the sensitivity analysis described
below

4.1 Sensitivity Analysis. Considening one Bezier curve seg-
ment, the objective function in terms of the design variables, ..,
four coordinates of middle two control points is

S(xey et XY=~ MSEYSE (8)

Since the objective function is indirectly related to the design
variables via the coordinates of the control points, the nodal co-
ordinates can be used as the bridge between the objective function
and the design variables. The coordinates of nodes on the curve
can be described in parametric form by substituting coordinates
into Eq. (1) as shown below

[x0 ¥
Xa Yo
[ »dd=[Bs(ty) B\(tg) Byt Bslny)]
: X2 Ja
L% ¥

9
where the subscript & indicates the number of the node on il
curve corresponding to the parameter f;. Xy, ¥g, X3, ¥; are the

coordinates of two end control points 0 and 0 respectivel *
X1s Yers X, Y are the coordinates of two middle contr”

points (0, and 0, respectively. By the chain rule of differentia-

So, we can put this Length Constraint, Loop Avoiding Constraint and also define like a
design domain for example, we can take this one for that segment and for this one let us
say it is already designed first segment, second segment we say we do not want to
interfere with that, we can define a non rectangular design domain for your second
curved line and vary that. In fact, both curves you have to do simultaneously, but we
have to demarcate the design domain, so that the two curves do not intersect and a curve
within itself will not have a loop that is it will not have a double point, it does not
intersect itself.
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lower and upper bounds on the design variables

4 Implementation and Solution Procedure

First, one or more compliant segments are identified for shape
optimization in a given topology. If the topology is obtained from
a topology optimization method, compliant segments and rigid
segments in it are identified. The experience with topology opti-
mization indicates that they are almost always composed of flex-
ible portions and relatively rigid segments [34]. These can be
wentified easily by examining the deformed profile of the solu-
tion If a portion of the design displaces more or less like a rigid
body rather than by elastic deformation, then it is a candidate for
a rigid segment. A nominal shape is assigned to compliant seg-
ments that will be optimized for shape. Each compliant segment is
then associated with a Bezier control polygon. In the examples
presented in the next section, only the middle two control points
are used to define design variables. The nodes for the beam ele-
ments are readily obtained by varying the parameter ¢ uniformly
from 0 to 1. As mentioned earlier, this enables re-meshing at no
extra cost in addition to achieving appropriate node density in
high and low curvature regions. Re-meshing here implies that the
nodal coordinates are generated anew after every iteration. For the
discretized two-noded, beam finite element model, the terms in
Eq, § are given by

MSE=V'KL

ar

axg f

a1 oy;

oy ox; oy E

g da 2 Hedya

The derivatives of the nodal coordinates with respect to the design
variables are the Bemstein’s basis functions as indicated below

(1

Vel (7}
The derivatives of the objective function with respect to the nodal
coordinates are obtained using the normal procedure used in struc-
tural optimization [33] For the sake of completeness, the derva-
tives of MSE and SE are given below

HMSE) _ i
a, N
A SE) L 125
ddy ) HTA (%)

where d is any design variable. dK/dd, in the above equations is
obtained by assembling the element-wise derivatives, ie.,
K, /3d) In the same manner as the global stifiness matrix K is

elem

assembled with k'
The sensitivities of the constraints are obtained in the same
way. The length constraint and the loop-avoidance-constraint

You can put those constraints at a shown and then you can do this sensitive analysis
because everything is clearly given. So you have a easy way of computing the gradients
and all that is shown here, where you take derivative respect to coordinates x c 1,y c 1, x
c2,yc2,xc3, yc3 xcd yc4, we have 4 points control points though are the
variables with respect to them you can take the derivative of objective function all the
(Refer Time: 18:07) available, that is not at all a problem take derivatives. So, which
when we take the derivative of the motivation and energy, that is the output displacement

as well as the energy you can do that and once you have them you can solve the problem.



(Refer Slide Time: 18:23)

given below, are nonlinear but can casily be dealt with through 4 4
symbolic manipulation software such as MAPLE lac={m-=|{n-<|-=<0 (13b)
3 3/ 9
NELEM  NELEM J )

z L= E [r.\‘a\‘li'n‘—p#;,‘fﬂ.' (13a)
el " Where

VX~ Xt gty = ayety

,[l.\b =20 Xt Xy~ e t Y~ Xt X EX Y A X X EX N
\ (=Xt Xyt X=XVt X V=X~ X Yatia)
Xj=2xx
(. jond -
xlx; 203Xt X0t Y = 2 H ) Xy X = XaYo = Xy =X Xey )

(=X Xy X=X Vot V=X Xaya txa)

In the examples solved, since there were more constraints than  the middle control point adjacent o it. The optimization problem .

This particular one that m and n were their loop providing constraint, they look rather
long, they just long they are not complicated, that loop providing constraint is shown
here m given by the long expression, n given by long expression. Basically it is
dependent on the coordinates of the control polygon points, that is the conclude
providing the constraint and that can be coordinate very easily and when you do this you

can actually put let us look at the problem statement.
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In the examples solved, since there were more constraints than
the design variables, direct method was used instead of the adjoint
method [35]

5 Examples and Discussion

The compliant mechanism solutions obtained with topology op-
timization methods need to be studied carefully to extract a mean-
ingful topology from them. One way to do this is through a kine-
matic interpretation of the mechanism solution. The question to
ask here is the deformation of which segments is giving the re-
quired mobility to the mechanism. In the examples given in Fig. 2,
such segments can easily be identified when undeformed and de-
formed configurations are superimposed on one another. Figure
2(c) and 2(e) show this where it can be seen which segments are
critical for the functional character of the mechanism. In order to
further improve the performance, shape optimization of such seg-
ments can be performed using the procedure outlined in this pa-
per. Once the kinematic character of a topology understood,
equivalent kinematic interpretation is often possible to simplify
the topology and make it suitable for shape optimization. Similar

interpretation is also possible with continuum topology solutions
(Figs. 2(b), (d), and (f)) which often reply upon flexural pivots
The topologies considered in the two examples discussed in this

the middle control point adjacent to it. The optimization problem
in seven variables and eight constrains is stated below

min: = MSE(Xy) V1 Xp2 V82 Xc1 Vo1 Xea)

st
NELEM

8= 2 Li—Ly=0

1
8=V ~ke <0
=V~ kx <0
Erdasias (14)
gi=lacl,
gs=lacl

8=xq—x*<0

g=x0-x,<0

and equilibnum equations with boundary conditions

where g, is the length constraint; g, and g; are geometric spac*
constraints to prevent intersection of the two segments where k,
the slope of the line that bounds the second segment to the right of

Here we have mutual state energy and in this particular case, we are not putting
constraint energy constraint here; just we want to maximum output placement, but
putting constraint in terms of loop providing for the first beam segment, second beam
segment and these are the design domain constraint so that the control polygon points lie
within our design domain, you can put this and also length constraint for all the arc
length of these things you can put a constraint overall you can pose a problem like this
and again we have one control polygon for one segment, another control polygon for the
other segment and you solve the problem you get optimal shapes like this.
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constraints to prevent intersection of the two segments where &, is
the slope of the line that bounds the second segment to the right of
the line joining the fixed point and the point where the two seg-
ments join, g, and g4 are loop-avoidance constraints, and g4-gq
are bounds on the vanables to restrict the design to the prescribed

(Figs. 2(b), (d), and (/) which often reply upon flexural pivots
The topologies considered in the two examples discussed in this
section are equivalent kinematic interpretations of compliant to-
pologies. These are chosen to illustrate the method over actual
optimal compliant topologies because more constraints (segment
intersection, for example) and practical considerations can be seen
in these two examples

(xe2, .Vbz)},

5.1 Examplel: Gripper. Taking the topology of the com-
pliant gripper shown in Fig 4(a), the following problem is posed /
for shape optimization As shown in Fig, 8, only the left half is (xb" ybl)‘
used due to symmetry. It is divided into two compliant segments |
that are represented as two Bezier curves. The end points of both
the control polygons are fixed. This means that the fixed point, the
output point, and the input point are not changed during shape
optimization. The x and y coordinates of the middle control points
on the left control polygon (xy;.ysy.Xs2.)s2) and one of the
middle control point of the right polygon (x,;.y;), and only the
x coordinate of the other control point (x,) of the right polygon
constitute the seven designs variables in this problem. The y co-
ordinate of the middle control point of the right polygon is fixed at
the same value as the y coordinate of the input point in order to
maintain the symmetry in slope at the input point. Here, an im-

|
|
|
|
|| (xd' ,Vd=ﬁrtd)
|

portant property of Bezier curves is used in that the Bezier curve  Fig. 8 Shape optimization problem specifications for th.*
is tangential at the end point to the line joining the end pointand  gripper
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Fig. 9 Optimum solution and its deformed profile for the Fig. 11 _Polyethylene prototype of the shape-optimized comp-
p-e ant aripper

You can see what | told you about when | change the parameter uniformly, so wherever |
have rather straight or low curvature regions, these things are further, when | go to the
place where there is high curvature, there are more and more point. That is exactly what
you want in messing of beams or frames, we want more elements where the shape is

changing a lot, fewer elements were shape is not changing that automatically comes here



and the optimal shape of these segments is here before and after deformation. So, this is

before deformation and this other one is after deformation, so here we have that

fabricated with the shape optimized design.

(Refer Slide Time: 20:44)
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Fig. 10 Meration history for the shape optimization of the
gripper
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Fig. 12 Shape optimization problem specifications for the
crimper
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Fig. 13 Shape-optimized crimper and its deformed profile

The remaining data for this example was as follows: cross-
sectional area=4= . thickness=r=5e~1in; mo-
ment of inertia=/n modulus of
material=F£=29¢+5 [hin"; a =5lb. The
mnitial guess was chosen such that the shape resembles that of an

25e-2in’;

o= i

existing topology-optimized crimping tool. With the initial guess
of [~40593, 23791, — 1.7885, 5,000, 2,19, 22, 1), an optimum
solution was found to be: =[5.0000, 24652, 4.3608, 22941,
24400, 0.8347, 0.4704, 4.6503]. Figure 13 shows the optimum
solution and its deformed profile. The objective function de-
creased from —0.025 of the initial design to —04 in the opti-
mized design, which is a significant improvement. Fabricated
polyethylene prototype is shown in Figs. 14(a) and 14(b) in its
original and deformed configurations respectively

Conclusions

Although topology optimization methods developed for compli-
ant mechanisms generate shape at the same time, there are some
limitations to the generated shapes. This is true for both beam
element-based ground structure as well as continuum element-
based design parameterizations. In this paper, optimization of
shapes of the compliant segments in a given topology is consid-
ered as a second-stage design. Systematic procedure for shape
optimization including practical constraints and sensitivity analy-
sis 1s presented. The width of the skeletal structure of the mecha-
nism is held fixed but could be varied as well. Cubic Bezier
curves were chosen to vary the shape as freeform curves because
of their many attractive properties for shape optimization. The two
examples presented indicate that substantial improvement can be
achieved with shape optimization. The shape optimization has
practical utility to further improve the compliant mechanism de-
sions nhtained with tanalaov antimization or bw other means




So another example that is shown here again two segments, control polygon for that
control polygon for this and here is the optimized one before and after deformation along

with the control polygons that are given and this is the one that is fabricated proto type.

(Refer Slide Time: 20:58)
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In fact, we have seen this earlier this proto type, it is a very good mechanical advantage
for this. It is very flexible, it is distributed complain design in a way and it has a very
good mechanical advantage as well and you cannot say that one point is deforming more
than the others and it has uniformed width everywhere, that is what we have assumed in

this Skeletal Shape optimization.
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So, there is another word that is actually a quite interesting where instead of having
uniform width everywhere and changing only shape, one can do this simultaneously both
shape of the skeletal segments as well as the width of the thing and that is called the

concept of Wide Curves.

(Refer Slide Time: 22:01)

Shape and Size Synthesis of
Compliant Mechanisms Using
tong 2w 1 \Wide Curve Theory

Ressach Assistant

Kwun-Lon Tlng A wide curve is a curve with width or cross section. This paper introduces a shape and

Prodessor size synthesis method for compliant mechanisms based on free-form wide curve theory.
With the proposed method, detailed dimensions synthesis can be performed to further
improve the performance after the topology is selected. Every connection in the topology
is represented by a parametric wide curve in which variable shape and size are fully
described and conveniently controlled by the limited number of parameters. The shape
and size synthesis is formulated as the optimization of the control parameters of wide
curves corresponding to all connections in the topology. Problem-dependent objective
are optimized and practical constraints are imposed during the optimization process. The
optimization problem is solved by the constrained nonlinear programing algorithm in tl, +
MATLAB Oprimization Toolbox. Two examples are included to demonstrate the effective
ness of the proposed synthesis procedure. [DOI: 10.1115/1.2180809]




So, this is Hong Zhou who is now a professor himself and professor Kwun-Lon Ting
who are a Tennessee technological university and this paper is published in journal of
mechanical design in 2006 about 10 years ago, what they did was shape and size
synthesis, so they use this Bezier curves for shape like we discussed here, but also they
change a size meaning they would change the cross section profile at the same time, but
in the previous paper that we discuss the cross section was the same, but here they
change that also, they call that wide curve is basically a extension of Bezier curves,
where in addition to the shape of the curve, you also have the width or cross section

dimension also varied.

(Refer Slide Time: 23:07)
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which is the regular Bezier curve of degree m with control points  parameters are continuous variables and can be optimized by the
sovesm}. The width of the wide Bezier curve is  constrained nonlinear programing function FMINCON in the
ers of the control circles are {Cy,i MATLAB Optimization Toolbox [42]. The sequential quadratic pro-
rameter ¢ is within the range 1 [0,1], The wide  graming algorithm is used in FMINCON function.
actually fully conolled by the set of circles . o
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So, they use something like this, so here you have a Bezier control polygon but you also
have a radios function there, a cross section function may be small here, larger, largest
and then decreasing again. So, it increases; goes to the maximum and then decreases are
something that is shown there. So, you can have this wide curve theory used so that you
not only vary the shape of the skeletal segments of a complain mechanism, but also vary

the cross section shape.
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prove the performance of the CM and make it meet practical
constraints, Some of these constraints may not be considered at
the topological synthesis stage ?

The general formulation for shape and size optimization can be G
stated as follows:

Optimize f1X) (5) oA

Subject to {g(X) <0.,j=1.2,....m) (6)
Here X is the design variable vector defining detailed geometry of
the synthesized CM. f(X) is the problem-dependent objective de- ¢
scribing the desired function of the CM. g,(X) are practical in-
equality constraints and constructed based on the CM application.
All connections in a CM are represented as parametric wide 0 2
Bezier curves in this paper. The design variable vector contains Fig.3 Cubic wide Bezier curve with self-intersection

B

| 2 3

552 / Vol. 128, MAY 2006 Transactions of the ASME

Downloaded From: i i igi ion.asme.org/ on 120022016 Terms of Use: asme.org/about 1.

They also wide a loop a winding constraint they put that in so that you do not end up
with things like that, it basically translates whatever done in the previous paper for the
wide curve theory and again they also do sensitive analysis to get the gradients and try to
get the design.
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where (u;,v;) are displacements of node i. ; is the direction of
the rotated nodal point normal. The vector form of Green's strains G weh whvn na
is given by the following equation: 84'=[56, 86, 64 @)
The equilibrium equation can be written as
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a o all®] 2 ) a || @ vectors, respectively. § is the vector form of the second Piola-




So, let us look at couple of things examples here, we get things like this.
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Fig.5 Design domain, topology, loading and supporting posi-
tions in example 1
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Fig.7 Optimal synthesis result of example 1

Fig.8 Design domain, topology, input, and output positions i
Cy=Ca Q—Ql cxample 2

8(X)= nm\{

Now, you see there is a nice distributed couple and mechanism because of shape

optimization not Topology and you have a cross section vary rather smoothly, is another



one, he had to take this skeleton first that this Topology you assume and then you do the

shape optimization.
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So, you end up with designs like this, you have taken that original Topology; now we can
get the nice shape, which has variable crossing in profile also, but this is the second step.
In optimization we have this hierarchy for the geometric form, what is Topology and
then we have the shape and then we have the size. So, today in this lecture we discussed
shape optimization using Bezier curve, one can do explains and many other ways as well
and also discuss the second paper by Zhou and ting, where they weighed the size also, so

shape and size that is the wide curve theory paper that you can look up.

So, we have discussed enough about topaz optimization and the shape optimization and
size optimization, of course there is a lot more literature on this. But now let us pass and
see how we can use in a practical application and what are the limitations and what else
could be done, so will take up a case study in the next lecture, so that we see how we can
use topaz optimization and shape and size optimization to solve a practical problem

which is the final aim for any research that raise develop design methods.

Thank you.



