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Hello, we have discussed topaz optimization for compliant mechanisms and the 

advantages, limitations, complications and of course, it does give a Topology all the time 

with or without this hinges either point flexures, edge flexures but does give a 

mechanism and we have ways to counter act the point flexures and edge flexures by 

going for restrained relative rotation are some other base of doing a reducing a erosion 

and dilation. 

But Topology is not ultimate thing for the eventual design of a compliant mechanism, 

shape also matters. Topology of course matters the most, we keep return in to that in this 

a course and whenever we talk about compliant mechanism the same breath you talk 

about Topology atomization because having the connectivity in the right way is very 

important for a compliant mechanism. 

However when you go to practical problems, the shape needs to be tuned, the shape of 

the beam segments most of the compliant mechanisms do have in them beam segments 

without that (Refer Time: 01:35) 2 d or 3 d instead of just having beam segments you can 

also have thin plates and shells, but they are still slander elements which are one 

dimension wise they are thinner compare to other dimensions. 

So, the shape of those things actually needs to be tuned to meet the manufacturability 

constrains or strength requirements are just available form because unless you have 3 d 

printing (Refer Time: 02:04) manufacture is taking place now, but you want to use 

traditional manufacturing methods where the shape is very important of the segments in 

there. So, let us talk about one publication, one paper where the shape optimization was 

done for compliant mechanisms. 



(Refer Slide Time: 02:26) 

 

So, let us look at (Refer Time: 02:26) mechanism before that let us actually look at this 

paper, that talks about what is called Freeform Skeletal Shape, there is a particular word 

that is used to call Skeletal Shape. By shape one can have lots of different interpretation, 

one is that if I have a beam element let us say I have beam element, whose neutral plane 

and neutral access I am showing here, I can have the width profile of that; that is one 

kind of shape optimization. In fact, that thing people would call a size optimization 

actually rather than shape optimization because it is a size that width profile is what we 

are trying to adjust, that is more like size. 

So, we are not talking about that type of Shape Optimization, we are talking about 

something called Skeletal Shape, that is the a compliant mechanism that has beam 

segments, if you draw them all with this line like this you would actually see a skeletal 

form of a compliant mechanism and that is what we are trying to optimize here. So, this 

is in general of mechanism design, volume number 125 and page 253 you can go and 

read in fact, we are going to discuss this paper in detailed in this lecture. 



(Refer Slide Time: 03:52) 

 

Let us first look at what do we mean by Skeletal Shape optimization, so I am showing 

two structures here, both of them are identical in a way except a little portion here it is 

like this, let me use a different color. So, here it is little rounded whereas, this is straight 

like this and same thing here little straight here corner, here little rounded that is what we 

have essentially there are holes, there are four holes in this structure this is what we can 

call it Topology optimization or Topology design. 

Other one we say that there is a frame, so let me use now a color that we can easily see, 

we have a frame out of outer frame, in this outer frame let us say that I have decided to 

connect this and this because Topology told as that if we connect these two, you basically 

make the hole four and then if you connect this, you make hole 3 also and then if you 

connect this to the frame you make hole 1 and hole 2. 

So, the Topology can be obtained by putting the holes or identifying this connectivity 

points and joining them. So, if I join this I create hole 4 that is that one and then by 

connecting this I create hole 3 and then I connect these 2, I create hole 2 and hole 1. So, 

now, the shape of the holes also matters, topology optimization the way we call it, it not 

only gives the Topology, but also gives the size and shape and everything, the shape 

holes also come as we have seen, but instead we can talk about a skeleton.  



So, if I were to draw for this Topology as it is drawn below, if this is the rectangular 

frame that we have; I say that this is Skelton of this one. Now, this is not the skeletal in 

the geometric modeling sense, but basically we are looking at beam segments, the frame 

is also a beam segment inside was the beam segments, we have those if we have 

optimize those we get in a way a complaint mechanism design or a form by just playing 

with the shape of these beam segments, if I were the given outer rectangular frame, that 

is what we mean by Skeletal Shape optimization. Skeletal Shape optimization or 

compliant mechanism to distinguish between this and what people normally call for 

beams and bars (Refer Time: 06:52) cross section profile that also can be ensured as 

shape optimization. 

So, what we will do is look at the paper that I have just sited and discuss that. It is free 

form meaning that you can have any shape that you want and that is the idea. So, once 

again this is journal Mechanism Design, so we can get this paper and read it. 

(Refer Slide Time: 07:21) 

 

So, what I just discussed is over here, what we have been by Skeletal Shape 

optimization. Again the motivation for this comes from this point flexure that we have 

talked about 1 node hinges. Now everywhere we have these joints whether you do with 

beam elements or continuum elements, we have the same thing. In fact, I would like to 



point out one other thing here. There is a little rigid potion stiff portion here, which is a 

check a board pattern.  

The check a board pattern is a problem in stiff structure optimization, where you get 

alternate black and white regions as it occurs in a chess board or a check a board and that 

is kind of similar to the one node hinge that we have discussed and there again we can 

come up with the intuitively explanation as to why the check a board occurs? Some 

people argue this to be in numerical instability into (Refer Time: 08:20) that is also 

correct, that is a mathematical way of saying intuitively the check a board that it gives is 

actually stiff and algorithm again exploits a loop hole in finite element frame work and 

gives you what happens to be numerically stiff structure, but is not something you can 

easily manufacture, some that we do not want to have. 

Whether you take beam elements or continuum elements, the topologies looks the same 

pretty much and the shape also in a way, but what we want to avoid here are things like 

this here, we do not want them. So, we do not want things that have this narrow fixtures 

and that happens all the no matter what problem you solve, again beam elements that is 

the frame problem this take a c here and the d which we have gotten using continuum 

elements, they both look the same, so it does not matter which when you take. 

(Refer Slide Time: 09:27) 

 



One other example where we have in fact, we have supports provided, to supports here 

did not want to connect because the force and displacements are over here, it takes this 

supports whatever beam does that was the continuum does. That is so much identical 

thing does not matter what type of element he choose we get a same design, but hinges 

seem to be a problem. 

Let us say you take it topologies like this, either this or that for a given problem and then 

try to identify these segments and try to tweak their shape to improve upon a 

performance. So, shape optimization comes after you do topaz optimization, you can 

assume a Topology like you have to do with (Refer Time: 10:06) body model based 

method or where you start with a rigid body linkage and try to come up with a equivalent 

compliant mechanism and try to optimize that or synthesize that that is one way or if you 

assume a Topology then you can do shape optimization as will discuss and try to get a 

complaint mechanism that satisfies the functional requirements as well as some of the 

performance requirements. 

(Refer Slide Time: 10:40) 

 

So, in this particular thing we are looking at using Bezier curves, the Bezier curves as 

you know there are some control points there is one here another one there, another one 

here, another one there. So, control points are the straight line one that we have is 



actually control polygon and from there we can draw the Bezier curves. It is a free form 

curve or variables are only the x y coordinates of this control points and everywhere else 

we get the uniform or smooth curve, which is a cubic in the case of Bezier curve as 

(Refer Time: 11:20) whatever Bezier curve is a simplest one. So, the entire curve of a 

beam segment such as the one we discussed in the Skeletal; free from Skeletal Shape 

optimization, we only need if the n points are fixed which are very well in many 

problems, then we are dealing with only two control points this and this.  

So, with these two control points we have in a 2 d problem, two variables there x y 

coordinates, another one two variables x y coordinates. So just with four variables, we 

can do the problem; we can get the shape of this. So, we are using a feature in geometric 

modeling adopting it for compliant mechanisms. 

(Refer Slide Time: 12:15) 

 

So, if we do that we can use our usual objective functions that we have already obtained, 

so let us say I want again go to our MSE by SE formulation, now there is no problem no 

one node hinges or anything point fluxions here because we already are dealing with 

shape rather than defining Topology. 



So this point fluxions are not going to occur because we are not using those indicator 

functions and usual Topozation approach; you just design the shape of the thing. 

Assuming the width of the elements, without this beam segments minus MSE over SE or 

sign of MSE, MSE square over SE this another small formulation which we have been 

discussed there are many such formulation in the literature, we did not discuss all of 

them.  

Let us look at this 5 a minus MSE over s e would like to minimize. If there is objective 

function, we can use the concepts of Bezier curves which are cubic are as it is showed 

here. So, all the points p of t are given by this hermit polynomials and these are the 

control points Q 0, Q1,Q 2, Q 3 the x y coordinates making at the cubic, these are the 

ones that we have the Bezier basis function that we have, so we can get that and define a 

problem like this. 

(Refer Slide Time: 13:42) 

 

So, let us I want to make a gripper this is a symmetry boundary condition here force is 

applied when I do that, output displacement should be here let us say gripper problem 

and I have identified two segments, there is a segment 1 and there is a segment 2. 



So, for the segment one this point is fixed, that point is fixed, this point is fixed, for 

segment 1; we need 2 points that are fixed. So X c 1, Y c 1, X c 2 ,Y c 2 become the four 

variables for this entire shape and likewise output displacement point is fixed, input force 

point is fixed, two ends are there shape of this would be the second segments, that will 

also have 2 control points which are not shown here, so 4 variables 4 plus 4; 8 variables, 

I have to do shape optimization now.  

Since Bezier curves we know all the segments are come, advantages of this Bezier 

polygon is that when you parameterize this curve, there is a parameter t that is go from 0 

to 1, if we take it uniformly you will get this distribution of nodes along the beam, here 

we can and as well use the beam elements; beam finite elements, wherever the curvature 

changes a lot our curvature is high more points coming, where it is more or less straight 

like this portion will get very few nodes. So, automatically if you have this parameter t 

varied uniformly between 0 and 1, let us say 10 points you take it takes 0, 0.1, 0.2, 0.3 up 

to 0.9 and point 1. 

These points will be distribute in such a way that, where there is more curvature more 

points will come, where there is less curvature more straight fewer points will come 

automatically. So, we can do that very easily with this Bezier discretisation, one other 

problem that can occur is that; this Bezier polygon see if the control polygon this lines 

intersect you can get actually a loop. 



(Refer Slide Time: 15:41) 

 

A loop has to be avoided in a compliant mechanism that does not make sense because 

eventually we are going to make it out of a sheet of material there is a continuum thing. 

So, having a loop like this would not be referred but there is fortunately a constrained 

that we can put, what can be called Loop Avoiding Constrained, that again comes from 

the geometric modeling literature and we can put a length constraint also, we can put a 

overall how much lengths. 



(Refer Slide Time: 16:07) 

 

So, we will be go back here, when I get this, how long do you want it? What is upper 

bound may be a lower bound, lower bound of course is joining from here to here, that is 

also fine if their combined that straight segment here, straight segment there and that is 

optimal we can take it. So, we are looking at a gripper such as this one, there is that and 

there is this. 

So, that is that is how it is taken is there a better shape is the question that we are asking, 

that will give you a better value of the objective function. 



(Refer Slide Time: 16:54) 

  

So, we can put this Length Constraint, Loop Avoiding Constraint and also define like a 

design domain for example, we can take this one for that segment and for this one let us 

say it is already designed first segment, second segment we say we do not want to 

interfere with that, we can define a non rectangular design domain for your second 

curved line and vary that. In fact, both curves you have to do simultaneously, but we 

have to demarcate the design domain, so that the two curves do not intersect and a curve 

within itself will not have a loop that is it will not have a double point, it does not 

intersect itself. 



(Refer Slide Time: 17:46) 

 

You can put those constraints at a shown and then you can do this sensitive analysis 

because everything is clearly given. So you have a easy way of computing the gradients 

and all that is shown here, where you take derivative respect to coordinates x c 1, y c 1, x 

c 2, y c 2, x c 3, y c 3, x c 4, y c 4, we have 4 points control points though are the 

variables with respect to them you can take the derivative of objective function all the 

(Refer Time: 18:07) available, that is not at all a problem take derivatives. So, which 

when we take the derivative of the motivation and energy, that is the output displacement 

as well as the energy you can do that and once you have them you can solve the problem. 
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This particular one that m and n were their loop providing constraint, they look rather 

long, they just long they are not complicated, that loop providing constraint is shown 

here m given by the long expression, n given by long expression. Basically it is 

dependent on the coordinates of the control polygon points, that is the conclude 

providing the constraint and that can be coordinate very easily and when you do this you 

can actually put let us look at the problem statement. 



(Refer Slide Time: 19:00) 

 

Here we have mutual state energy and in this particular case, we are not putting 

constraint energy constraint here; just we want to maximum output placement, but 

putting constraint in terms of loop providing for the first beam segment, second beam 

segment and these are the design domain constraint so that the control polygon points lie 

within our design domain, you can put this and also length constraint for all the arc 

length of these things you can put a constraint overall you can pose a problem like this 

and again we have one control polygon for one segment, another control polygon for the 

other segment and you solve the problem you get optimal shapes like this. 
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You can see what I told you about when I change the parameter uniformly, so wherever I 

have rather straight or low curvature regions, these things are further, when I go to the 

place where there is high curvature, there are more and more point. That is exactly what 

you want in messing of beams or frames, we want more elements where the shape is 

changing a lot, fewer elements were shape is not changing that automatically comes here 



and the optimal shape of these segments is here before and after deformation. So, this is 

before deformation and this other one is after deformation, so here we have that 

fabricated with the shape optimized design. 

(Refer Slide Time: 20:44) 
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So another example that is shown here again two segments, control polygon for that 

control polygon for this and here is the optimized one before and after deformation along 

with the control polygons that are given and this is the one that is fabricated proto type. 

(Refer Slide Time: 20:58) 

 

In fact, we have seen this earlier this proto type, it is a very good mechanical advantage 

for this. It is very flexible, it is distributed complain design in a way and it has a very 

good mechanical advantage as well and you cannot say that one point is deforming more 

than the others and it has uniformed width everywhere, that is what we have assumed in 

this Skeletal Shape optimization. 



(Refer Slide Time: 21:34) 

 

So, there is another word that is actually a quite interesting where instead of having 

uniform width everywhere and changing only shape, one can do this simultaneously both 

shape of the skeletal segments as well as the width of the thing and that is called the 

concept of Wide Curves. 

(Refer Slide Time: 22:01) 

 



So, this is Hong Zhou who is now a professor himself and professor Kwun-Lon Ting 

who are a Tennessee technological university and this paper is published in journal of 

mechanical design in 2006 about 10 years ago, what they did was shape and size 

synthesis, so they use this Bezier curves for shape like we discussed here, but also they 

change a size meaning they would change the cross section profile at the same time, but 

in the previous paper that we discuss the cross section was the same, but here they 

change that also, they call that wide curve is basically a extension of Bezier curves, 

where in addition to the shape of the curve, you also have the width or cross section 

dimension also varied. 

(Refer Slide Time: 23:07) 

 

So, they use something like this, so here you have a Bezier control polygon but you also 

have a radios function there, a cross section function may be small here, larger, largest 

and then decreasing again. So, it increases; goes to the maximum and then decreases are 

something that is shown there. So, you can have this wide curve theory used so that you 

not only vary the shape of the skeletal segments of a complain mechanism, but also vary 

the cross section shape. 
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They also wide a loop a winding constraint they put that in so that you do not end up 

with things like that, it basically translates whatever done in the previous paper for the 

wide curve theory and again they also do sensitive analysis to get the gradients and try to 

get the design. 

(Refer Slide Time: 23:58) 

 



So, let us look at couple of things examples here, we get things like this. 

(Refer Slide Time: 24:01) 
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Now, you see there is a nice distributed couple and mechanism because of shape 

optimization not Topology and you have a cross section vary rather smoothly, is another 



one, he had to take this skeleton first that this Topology you assume and then you do the 

shape optimization. 

(Refer Slide Time: 24:33) 

 

So, you end up with designs like this, you have taken that original Topology; now we can 

get the nice shape, which has variable crossing in profile also, but this is the second step. 

In optimization we have this hierarchy for the geometric form, what is Topology and 

then we have the shape and then we have the size. So, today in this lecture we discussed 

shape optimization using Bezier curve, one can do explains and many other ways as well 

and also discuss the second paper by Zhou and ting, where they weighed the size also, so 

shape and size that is the wide curve theory paper that you can look up. 

So, we have discussed enough about topaz optimization and the shape optimization and 

size optimization, of course there is a lot more literature on this. But now let us pass and 

see how we can use in a practical application and what are the limitations and what else 

could be done, so will take up a case study in the next lecture, so that we see how we can 

use topaz optimization and shape and size optimization to solve a practical problem 

which is the final aim for any research that raise develop design methods.  

Thank you. 


