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Hello, in the last few lectures we have been discussing compliant mechanism synthesis 

using optimisation, which instantly leads to what we call topology optimisation. So, far 

we have discussed that in the context of tress element base ground structure as well as 

beam element base ground structure where we can get topologies with which we can 

make working designs of compliant mechanisms. 

Today we will extend the same concepts based on mutual strain energy which is a 

consequence of principles of virtual work, we will do that this will be the third time 

where we visit this concept after examining it on the view point of tresses and then 

beams now will do with continuum elements meaning that we can basically generalise 

the concept where our design equations will be deferential equations will go into little bit 

detail about sensitivity analysis as well where if you do not want use what we called 

optimality criteria method instead want to use mathematical programming methods you 

would need gradients or what we call sensitivities. 

So, will discuss that also today little bit more theory and the next class we will look at 

some implementations and really understand how to apply what we have learnt. So, let 

us look at this design of elastic continua for desired deflections, so that has been our 

focus when we talk about compliant mechanisms we always say that we want to design a 

compliant mechanism for desired deflection because without deflection compliant 

mechanism does not make sense, it has to move to act like a mechanism. 
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Just to recall last lectures content where we used a ground structure which comprises 

beam elements and similar thing we had taken for tress elements except that in tress 

elements we would have joined you know this would have joined, that would have joined 

that and so forth. So, allowing overlap which we said for beam elements does not make 

sense in practise, so we take a different ground structure were we do not join every pair 

of nodes in the ground structure, we only join a few points to avoid overlap.  

So, if you ask the difference what is that makes beam elements, let us say more 

appropriate than tress elements, we can see that whenever we have an element like this 

where it is fixed here that is different from a tress element which would had a pin joint 

there right that would have had a pin joint here and here, that would lead to basically 

rigid body linkages and whereas, if you take this now as a beam element we have instead 

of this pin joints, we have fixed connections. So, we have fixed connection in this case 

over here and over here and over here. It effectively means that if I want to replace this 

with a rigid body and a joint like we do with so rigid body model, there will be a 

torsional spring also there, torsional spring over there. 

So, it gives the ability to bend let us say this element bends, it has to maintain that slope 

and that slope over that it has to bend in some fashion right, so every element here will 

be bending. So, you capture the behaviour that you would get in a continuum, let us say 

we take this in the last lecture we saw the practical realisation of this design, where we 



were able to make this out of one piece by smoothening that you do c and c machining 

all the sharp edges will become filetat. So, we get one big plate that we take; right one 

plate and then we cut out all this holes to make this mechanism. When we do that, what 

we are doing is a continuum; now that continuum is being represented with the beam 

elements as shown here so; obviously, continuum model if you do that is going to be 

closer to the reality than beam element or truss elements. 

So, what we want to discuss today is; how to go from here which is working with 

discrete elements truss element and beam elements. Now let us go to continue elements 

directly and one more thing before we leave this is to note that in a ground structure such 

as this one in a particular element for example, we do not have this element that is 

missing here right, why is it missing because its area cross section has gone to 0. We 

ensure when we specify the strain energy upper bound a c star and the deflection that we 

want and the force that we apply and the material property that we give, we have to 

ensure that we get a solution where areas have cross section will not be imaginary. 

In other words square root sign had a quantity we wanted to be not negative and we also 

ensure that it is not 0 also, but it can get to 0, it should ever be negative it can become 0 

in which case the corresponding area cross section of an element will be close to 0 in 

which case we say that the element is missing in the ground structure, that is how which 

element should be there, which element should not be there all that is decided by the 

algorithm. Now we have discreet elements, we are taking out some the rather algorithm 

takes out some of these and puts a remaining ones. If we ask what is that the element that 

are remaining some are them are wider say for example, this is wider than this one which 

is narrower. So, what is that; that is common to all of those we would find that there is 

something that we can call an optimal property of this which will come about when will 

do little bit more analysis that also we will try to do. 
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So, let us move on to something closer to reality which is to use continuum elements, by 

that what do I mean in this case now I would just take the domain, it can be any arbitrary 

shape domain. And then we say that just like in the previous problem, we say that bottom 

edge is where we can fix and we are applying a force here; this is our applied force. Now 

we say that a point somewhere here has to move in that direction, this is the desired 

displacement; we are hoping on this desired displacement because this exactly what 

differentiate a stiff structure designed problem from a compliant mechanism designed 

problem, previous in the truss and beams we had a set of r ground structure of elements. 

Now will not say that may not be the case no discrete element, we just say that this 

whole thing is a continuum so, this whole thing is one continuum then we have to see 

where we would like to put material, where we want to put a whole right.  

So, this is the continuum or what we can call an elastic continuum because in elastic 

body we have interested only elastic response of this compliant mechanism. How do we 

do this problem, now first thing we have to do is; we have to write the mutual strain 

energy because that gives the deflection the point. So, I would like to know what this 

deflection is, so if I call this it is by some symbol; let us, I just call this u out in the other 

point where we want the deflection and in the direction in which we want a deflection. If 

I say u out we know that this mutual strain energy is numerically equal to u out. Why do 

say u out, numerically equal to because these energy this is displacement even it is 



different, but we do note that this is to be multiplied by 1, which is the unit virtual load. 

We are reinforcing the concept once again here; this is a unit virtual load, so this is 

meters, this is Newton that gives a Newton meter or joules energy. 

So, how do we write this you have for this problem, any general elastic body two 

dimensional, one dimensional, three dimensional does not matter, this u out at a point is 

once again given by this principle of virtual work because if I imagine a virtual load, unit 

virtual load in that direction in that will be the external virtual work because this into 

virtual load is external that should be equal to internal virtual work, which we have to 

integrate over the entire domain. When I put this omega like that I mean a domain, it can 

be one dimensional domain, two dimensions or three dimensions just domain, but 

integrate. 

What do we integrate, the work done by the internal forces when we apply this unit 

virtual load or rather the unit virtual load will cause internal forces everywhere in the 

domain and those forces doing virtual work over the displacements caused by the given 

load. So, when you put a force there; it is a real load that is going to cause displacements 

everywhere, you take those displacements and conjugate them with the internal forces 

arising due to this unit virtual load, we get the internal virtual work. 

So, we have the strains due to the virtual load let me call that as epsilon v, so since we 

are talking about 2D, 3D in general, so I will put strain as a vector that it will have the 

normal strains and shear strains. If it is 2 d problem we will have epsilon x x, epsilon y y, 

epsilon x y with the 3D problem will also have two more normal stresses epsilon y y 

epsilon z z and two more shear stresses epsilon z x epsilon y z. We will have all of those 

three normal stresses, three shear stress in 3D, two normal stress and shear stress in 2D.  

So, will have this we have to multiply this with the, so let us actually change this will say 

epsilon is due to the real one whatever force is applied and will make stresses to be due 

to the unit virtual load. So, because we imagine that displacements are real due to the 

real force and supply whereas, stresses are internal forces are due to the unit virtual load 

whichever way you do it does not really matter because it is just that this also can be 

expressed in terms of epsilon, epsilon v transpose d epsilon where d is the stress strain 

relationship. So, this one is a scalar because both epsilon and sigma will have the same 

dimension when you take in a product will be just sigma transpose epsilon, this is the 



mutual strain energy. If we also say that sigma is equal to d times epsilon then this would 

become symmetric in the sense that we will have this sigma transpose in that case it will 

become epsilon v transpose d this is the matrix epsilon this. So, this is strange to the real 

load, this is real force and this one is due to unit virtual load or force. 

So, let us say in two dimension to be clear, let us write it as sigma x x, sigma y y, sigma 

x y we have this is d d by three matrix times will have epsilon x x, epsilon y y, epsilon x 

y these are our material property matrix, that is what we have. 
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Then we can write this mutual strain energy in this manner all, so once we have this we 

can go head and close our problem our problem is to have as we have said earlier we 

want to minimise volume. So, let us say we denote variable rho to indicate the presence 

or absence of material; that is the key to topology optimisation where we convert a 

topology problem to material distribution problem. So, we say that the volume that we 

want we simply say this is the differential volume d omega; we have to integrate over 

thing we will get a volume, but now we are putting rho that becomes our variable, this is 

if it is truly to be a function of x and y 3D; x y z then let us call this rho an indicator 

function which indicates when rho is equal to 0 or 1, if it is equal to 0; it says no material 

there that is material is absent; no material. So, here there is material present material is 

present if you look at that now when rho that you take in the case of 2D, it will be a 

function of x y. 



So, when you have a domain arbitrary domain, rho can be defined everywhere inside if it 

is 3D, I will have this as the function of x y z. So, now have three dimensional object as 

the star that indicate the it is like a rock the some bulky thing, so there will have rho 

which is the function of x y and z. Then at every point whether there will be a material 

there or a whole, it will decided by the value of rho, that becomes our unknown, that is 

the minimising volume and then we have subject to our displacement constraint to that 

degree of freedom where we desire that, so there we already did this mutual strain 

energy. So, I can write there functional or integral here which is, what we just did epsilon 

v, transpose d, epsilon; this is due to real load, this one real and this is the virtual we 

need virtual. 

So, have that and then these we just with internal 3D; if it is 2D we just add thickness 

and then take care of this one, this I have written for 3D. If it is 2D, the difference will be 

this; let us see this were that if it were for 2D what will do is write it over this domain 

becomes now two dimensional domain, so this strain instead of having six component it 

will be only three components then we will have the same thing epsilon. So, here I would 

write d a at times thickness, so now it will become it is a 2D problem, so it will have 

some thickness everywhere.  

So that is thickness t, we change that d v will be d a and this will be now integration over 

the area that is this two dimensional area that is only difference. So, we do not need to 

worry about anything else as to its 2D or 3D other than thickness coming there and 

instead of having six strain components in 2D there will be only three strain components 

and same thing is stress, so will have this. Now we say this particular thing minus delta 

that we specify should be less than equal to 0, you want it to be delta are small; smaller 

than that and then we also have strain energy which is easy to write. So, this is half 

epsilon transpose d epsilon over this minus s e star this specify less than equal to 0 that 

becomes our problem.  

Now if you see the design variable is rho, but where is it; it is actually d, so what we do 

is we write this d to be rho into what we can call d knot by d knot what I mean is the 

actual material properties. The elastic case is material properties is going to be Young’s 

modulus e and presence ratio they will be there in some manner depending on this 2D or 

3D within 2D, whether it is a play in stress element then strain element all of those are 

the axial material we have different combinations of e and nu as this three by three 



matrix in 2D, in 3D there will be 6 by 6 matrix relating six strains and six stresses that is 

basically the material model you assume and they will be there. Now we take that 

multiply by rho, when you multiply by rho we can see that wherever rho is equal to 0, 

then the d varies 0 meaning that there is basically vacuum, there is no material that is 

exactly what we want; no material when it is one, it becomes d nought. 

So, the material is present that is how we bring in the design variable to this problem. 

Now this problem we can solve just like we did the problems of tresses and frames that 

again goes back to our calculus of variations, but a small difference when we talked 

about tresses and frames, we wanted to know whether the static determinate or 

indeterminate whether indeterminate, we also had to include the corresponding 

equilibrium equations. Whether determinate we were able to get this mutual strain 

energy as well as strain energy directly in terms of the loads that are given where we 

could compute the internal forces right whereas, when I start a little indeterminate you 

cannot do the continuum structures are invariably indeterminate, so we need to add also 

to this equilibrium equations. 

So, we had equilibrium equations for two cases for the real load as well as for the unit 

virtual load, if you do that let us rewrite this problem. 

(Refer Slide Time: 21:26) 

 

So, now minimise we have over the domain this and rho is a function is our variable and 

subject to our deflection constraint which is epsilon v transpose, d epsilon v over this; 



minus delta less than equal to 0 and then half epsilon; no v there just epsilon; transpose d 

epsilon, so this is not v here right this will be 1 epsilon this is real 1, this minus s e star 

less than equal to 0 and epsilon that we have here that is strain which will depend on the 

displacement in the case of 2D, 3D we can write let us if I take in the case of 2D will be 

three strains; one will be dou u by dou x that is a normal strain. 

Then we will have dou u by dou y that is normal strain in the other direction then will 

have dou u by dou y plus dou v by dou x with a half, it depends on how write d matrix, 

but let us just write half for; if we do the same thing symmetrically, it will become half 

will disappear where you come dou u by dou x plus dou u by dou x half of it which is 

dou u by dou x and same thing here is the shear strain and normal strain. So, we now 

have the function u as the function of x and y also v as the function of x and y. This is the 

displacement in the x direction, if I take this way x and y and v the displacement of y 

direction. If it is three dimensional case; we also have done u which is a displacement of 

of the z direction, then we will have a strains expressions also change, so now we need to 

have governing equations for u v; let us together, let us call that basically u bar that 

captures u and v displacements that is due to the real load and then will also have u sub v 

let us not get confused with this v is just to indicate that it is virtual. 

So, we need to have governing equations for that, which we can write which we can 

write governing equations that that you will have to do if you recall that a way. So, we 

say divergence of this d matrix that we have with epsilon that will be stress and if you 

have any body forces you put that like inertia forces initial forces like gravity or 

centrifugal force you would do that equal to 0, that mean governing equation likewise 

will have governing equation for; d unit virtual load epsilon v and there will not be any 

body force there, equal to 0 and then you have boundary conditions also plus both of 

them will have boundary conditions which can be forces acting on the surface or some 

displacements being specified like fixed points will have all that is the continuum way of 

writing the problem. 

For ease of understanding, let us convert this to discretize problem, it is not discrete 

problem like truss and beam elements will be discretize problem. 
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In the sense that whatever we have written in the previous slide will now write; now the 

rho will become rho bar; that means that if I have some continuum, I would divide that 

into finite elements everywhere let us I take triangle elements, I will have you know 

something like this triangles, so arbitrary whichever way you mesh x will mesh and each 

element will have a rho; rho i if there are n elements in the discretize domain will have 

rho 1, rho 2 up to rho n. Now when this rho I, e is equal to 0 i-th element will not be will 

not be there, there will be a whole will be equal to 1, there will be a material right when 

you have that then we say summation of all this rho i that will be the volume. 

There are number of elements is n that will the volume and then we say subject that true 

our mutual strain energy which is u v transpose where you do unit virtual load and get 

displacement and stiffness matrix k whatever we had earlier epsilon transpose g e 

epsilon, now it will be u v transpose k u due to the real load that minus delta is less than 

equal to 0 and then will have half u, transpose k this a stiffness matrix u minus s e star is 

less than equal to 0 and then will also have the equilibrium equations which were in 

continuum form, now it solve discretize form k u minus the applied force f vector equal 

to 0 and then we will have the k u v that is the displace due to virtual you need to virtual 

load then I can put that as f v equal to 0. 

Basically f v will be, but in this case if i say this is the force applied and I want this point 

to move like that, this is the displacement desired right there will be 1 delta or less and it 



will be active it will always be delta then only there this f v will be equal to 1 everywhere 

it is 0, these the problem we need to solve. 

Once again where are the design variable rho it will be in k because this k is this stiffness 

matrix that is the one, this is the stiffness matrix and that is the one that will have the 

design variable because if for those of you recall finite element analysis. This k is 

assembled form of local element stiffness matrix is where that k will be what will have b 

transpose d b and what is b; b will be strain displacement matrix. So, we have strains 

coming from displacements they b matrix relates them and d again is our things, that is 

related to rho times that d 0 that we wrote in the case of continuum elements. So now, we 

can solve this problem where I can (Refer Time: 28:47) as per necessary condition and 

then solving it. And we have to write the Lagrange multiplies like before for trusses and 

beams, so it may look intimidating, but if you understand trusses and frames; it will be 

quite straight forward because the concepts are readily transferable. 

So, we have two Lagrange multipliers and then we have lambda which is now a vector 

for this vector equation then will also have another lambda v shall we go back and look 

at trusses and beam problems, we have essentially the same frame work except that now 

it is the continuum element elements will be there or not there depending on the 

corresponding value of this rho i for each element and the rho i’s actually go here, but 

now other trick that people use is to put a exponent there which is called the penalty 

parameter what it does is, if the value of rho that is close to 1, it will be quite large or 

when you write it raise it to a exponent say 0.9 will be considerable value even if you let 

say eta equal to 2, it will become 0.81, but other hand rho is close to 0 is 0.1 when you 

raise it to a power it will become 0.01 it becomes much smaller if it is larger, it will still 

stay close to 1 and if it is close to let say 0.99, if you multiply by 0.99 again when you 

square it eta equal to 2 r actually qubit will be even better. 

So, what this penalty thing would do is to push things that are close to 0 to become closer 

to 0, which are close to 1 become closer to 1 eventually and it will stay close to 1 right 

that way we ensure that this rho which is to vary between 0 and 1 will be pushed to 0 and 

1 so that material will be either there or not there are not been intermediate state that is 

what we want to avoid, that is what this eta which is big penalty parameter does this is 

the penalty parameter. It penalises material if it is close to 0 and if it is close to 1, it 

actually encourages it and become part of the final solutions. Finally, we will get some 



whole in this topology forms these optimisation problem statement, then I have to solve 

this we have to write the Lagrangian. 

So, we write Lagrangian we have this sigma rho i were i equal to 1 to n because at these 

the volume that actually I should actually put this v i. Let us go back, it is not just y, we 

have to multiply the volume of that element. So, we have too many vs here let me use 

capital v i that is the; this particular thing has a volume; volume of that let us indicate 

that with v i why v i are (Refer Time: 32:18) rho transpose v. 
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So, now I can just write it everything in matrix form, so I will write rho transpose v and 

then I have this lambda times u v transpose, stiffness matrix k; u minus delta plus that 

plus this gamma half u transpose k u minus s e star and then we will have this lambda 

transpose k u minus f plus lambda v transpose k u v minus f v you need to virtual load 

that is our Lagrangian, so we have the Lagrangian. 

Now, we need to take derivative of this with respect to our rho i each element we have to 

get in equation for it, if I do dou l by dou rho i that we get to 0 then you have to see 

where all will have rho, the first term we definitely have rho that will simply become v i 

because that summation of rho I, v i if derivatives equal to rho i; I will get v i and second 

one lambda which we had done for truss and beams we have to recall what we did. 



So, now where will rho be; rho be actually in here, but indirectly it will be in here as well 

as here. So, we have to take the chain rule and keep applying, we will get several terms 

similarly over here and over here and over here we have and this one and this one. In all 

of those will depend on rho i we have to write that we will get a lengthy expression equal 

to 0, but you do not have to worry about because when we solve the problem, we will 

able to solve for u and u v for assumed rho distribution and then what we do not know 

would be dou u by dou rho i and then dou u v by v by dou rho I, here are the centre of the 

displacements due to real load, as well as unit virtual load this one you actually do not 

compute. 

Where when you get this long expression here which will do in the next lecture 

continuing this is equal to 0, everything know put in here and will have some term that 

contain these whatever multiplies these two. We say that should be equal to 0 and when 

we do that what we get will be equations with which we can solve for this lambda 

transpose and lambda and lambda v, we can solve that we call the adjoined equations 

again what we had done for the beams case will also do that. 

So, what will be the; before you come to the next lecture is to write it all out, so all the 

derivatives you write and then separate out a terms that contain dou u by dou rho I, dou u 

v by dou rho i equate them to 0 then you will have equations to solve for this lambdas 

then rest of them what you get, you will get something interesting when you eliminate 

those terms by choosing lambda transpose; lambda and lambda v what you get will be 

quite interesting, we will get something which will be useful to interpret for sensitivities 

also sensitivity meaning gradients or objective function, the constraints we have 

objective function over here, we have the objective function it is objective function and 

then we have a constrains. 

So, we have the one constraint which is the mutual strain energy, another constrain strain 

energy how do they change when I quote up one particular rho, that is whether it is 

increased or decreased slightly how do the objective function constraint in that the 

gradients we can get them all from this analysis which we will discuss in the next lecture 

and then also look at the implementation where you can where we implement this 

optimality criteria method and then solve the problem. 
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So today to just summarise, we have understood the mutual strain energy in the context 

of continuum interpretation. In fact, we wrote the continuum formulation variation frame 

work have been switched over discrete one, but those of you who are familiar with 

variation calculus you can actually write differential equations rather than the discrete 

equations they have written, but what is important also notice that we are still sticking to 

our compliance stiffness formulation there is constraint on the displacement, there is 

constraint on the strain energy 

So, this is to avoid those unphysical situations where areas of (Refer Slide Time: 37:42) 

become imaginary. Similar thing would also happen in the continuum thing, but you can 

see it as clearly as you see in the case of trusses and beams and whatever we are to start 

doing this lecture leads to the optimality criteria method, and then it will also tell us how 

to do this sensitivity analysis. So we will continue this in the next lecture. 

Thank you. 


