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Lecture - 28 

Design for deflection of beams and frames 

 

Hello, continuing with the previous lecture on classes now we move on to beams. Beam 

as a single beam where we want to design it for given deflection and then we also look at 

what we can call a frame ground structure. We are talking about ground structure in the 

last lecture will continue. And also look at couple of examples to see how this method 

will be useful to designs and compliant mechanisms comprising a few beam segments. 

So, today the topic is design of beams and frames for desired deflection. 
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We are talking about this ground structure for truss topologies at the end of last lecture. 

So, where we said that we can join every pair of points in the cases of trusses, means I 

can have a these things and these and these and all possible ways every paid of them we 

can connect in the case of trusses. So, if I take two elements here there over lapping that 

is perfectly all right for trusses, because you can place all these elements in parallel 

planes and things will be just find because truss elements they only contract or stress, of 

course, other joints rotation is freely allowed. 



When you come to frames there I cannot let things over lap. So, like we have shown in 

this thing for trusses which we are discussing last time we can let elements over lap there 

is there one over the other when you project the motivate two d plane because, we can 

place them in parallel vertical planes. In the case of frames we cannot do that, we can 

still do it, but the problem would be their they tend to twist as well, because there will be 

bending out of plane when you put them parallel planes and the behavior may not be 

same as what it will be they are all to be in the same plane. 

So, in the case of frames where will now have not hinged elements like trusses, but 

actually frame may be welded to one in other. So, it will like this. So, you can also 

introduce a mix side load and put a few more elements like this so that we create more 

possibilities for resulting topology. Every one of them we can to the midpoint and do 

this, that will be the frame ground structure. And then algorithm may to choose to 

remove that, this, this, this and to make a mechanism. So, that is possible. So, it can do 

by removal one at a time or few reach at a ration it can give a compliant topology for a 

frame or which we can call a compliant mechanism with slender beam elements. 
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So, let us look at this example. So, here we have a specification it is taken from this 

particular paper, we will be discussing more about what was in that paper. Let us say we 

attaching over here they can be ping joints because, they are fixed at that point not really 

rotation is not prevented it is just a hinge joint, but rest of them we can define a frame 



ground structure like this. This is called ground structure because, there is like super 

structure in which all possible elements are indicated and algorithm would remove like if 

you see here this particular let us draw what is actually there in this is the topology that 

came up. 

So, this element is there is in a blue because that is a little thin and then this is there, this 

is there and this is there, this is there, this is there, this half and half those are there, this 

is here, this is there and this one and this one. So, these pretty much what are there. So, 

here it is fixed there, fixed here and there is fixed here and fixed here. So now, we can 

see how the optimal topology would come about will be solve this as a frame problem 

will discuss a details, but we are showing the examples first that it will give something 

like this which as you can see when we apply force in that direction the output is moving 

in this direction, here the dash line in this figure is a deformed profile will solid one is 

what algorithm gave. 

These in blue and there is this little thing is there right. So, this one; these are in blue 

comparative other once because they are little thinner there and the others that is how it 

was drawn. So now, we can see that you can get an optimal topology that if you fix you 

know these points as it was assumed in this problem now this particular one when you 

apply force here it will be move in the other direction as desired here. So, that is the 

design for desired deflection. 
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And let us look at another example where you have ground structure which is as it is 

shown here there are nodes at all these points now, here input is this way and we want 

output in a direction like that. So, this point should be move like that. How do we give 

that the unit load that we specified it should be at that point in that direction that is where 

we desire the deflection some delta? So, then the algorithm gave a result like this. 

So, here it is actually fixed not like a ping joint it is actually fixed like a cantilever 

because, that is what is given in this specs here now this particular one if I apply a force 

there this point will move in that direction the point is over here that will move in the 

direction, and whether that does it or not we can actually take the solution we can do a 

simulation if we want the black one here is deformed one these dotted red once are the 

un-deformed once. So, if I apply a force here this actually would be moving in that 

direction. 
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So, I have a mechanism for you to see this, this prototype was built exactly the way 

optimization came up here we can actually see if I apply force at this point in the 

downward direction is should move in that direction. you can see the output this used to 

call it a peak up mechanism it looks some out like a bird. So, it will go like that just like 

what optimization gave. So, we can synthesis topologies without assume anything if you 

go back and look we start over here, where we assume nothing other than the design 



domain where should be fixed where apply force and then we ask or we desire that 

output in the sense certain fashion we get the solution. 

This parallels the truss design that we have already discussed now will just repeat that for 

beams. So, that the ideas that we have discussed will get rain force, because they also 

become relevant we considered continuum topologies where we have more continuous 

structures and not truss or beam elements like it is here. 
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You go back to Barnett’s paper gain because; it all began with his paper his work. So, 

what here considered was if I take a straight beam one beam first and if it is statically 

determinate let us say on that we considered some loading. So, from variable load 

general load so that we can write in general expression q of x under this load if the beam, 

let us say deforms in some way at a particular point we want this deflection to be delta 

that is what we want at some point that also has to be given some x hat because, x we can 

assume was like this. 

So, we want to design this beams. So, that at some x hat the deflection is delta and we 

want to have minimum value of the beam that is a problem that he had looked at Barnett 

had considered. 
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So, if you write that problem. So, we say we want to minimize the volume here you 

would try to pose it using a continuum beam rather than discrete one will come to 

discrete one later continuum we need do it our unknown function would be let us say 

width profile of the beam the beam is discrete beam it has a width that is when we take 

second movement of area we say b d cube by 12 where b we can call it width are is 

better to call it in breadth is a dimension which is perpendicular to the plane or 

deformation with the beam. 

If that is a one that is if you have a beam we look from the top the breadth can vary like 

this, this is b of x at every place it will have variable value here is something here is 

more less and so forth that is a b of x that is a unknown function there becomes a 

calculus of variations problem. So, here so the functional as we call it the integral here 0 

to l a d x that is the volume of material that is what you want to minimize volume of the 

beam and subject to or deflection constrained, we want to say the deformation the beam 

is like this. 

Let us say if it is simply supported where it goes like this at a particular value they 

should be delta and that particular value is x hat if you say we say w. If this deformation 

in general is w of x transfers displacement we say w at h hat minus delta equal to 0 less 

then equal to 0 whichever where you want to say you want to put that constraint. So, we 



want to solve this problem we want to find b of x area here will be this area will be b 

times a t thickness of the cross section. 

We assume a, let us say rectangular across section here rectangular across section. So, 

this is t and that is p this is incline and this is the thickness or d which are way since the 

take in derivative. So, is not, but use d let using t here. So, when you have this problem 

in a before we solved when need to see how you can get this w x hat how do we get that 

that is where we use the principle of virtual work are our method of unit virtual loan that 

is if I take the beam there will be where taking a simply supported beam, because a 

determinate to one we can solve for forces without having to compute the deflection. Let 

us say there is some loading on it there will be some loading on it which you can say q of 

x in the length. Of course, this pan of the beam and let us say this one deforms and this 

particular manner let us call that deformation w of x at a particular x hat that is form here 

to here this is x hat now these are all the same. 

So, x hat, how do we get that expression. So, what we do in this case is take the real load 

and we also take the virtual load we take this same beam simply supported now we apply 

to virtual load at the point this will be unit load and show one at the point where we are 

desire in a deflection which is h hat, if we do that we will get the bending moment in this 

case I can call it capital M x and in get bending moment. 
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Here I can call it small x small m of x we know how due to the bending moment it is 

starting determinate to one not knowing the area of cross section is just find, because it is 

independent of that we get m and n if you have this, this w at x hat can be written as an 

integral as a functional 0 to l capital m small m by e i d x. 

So, once again this m and small m the capital M denotes bending moment in the beam 

due to actual load bending moment due to actual load and this is bending moment you 

need to virtual load bending moment due to unit virtual load two different times you 

have to do and that gives this w x hat how does it come about. So, for that again we look 

at principle of virtual work which says internal virtual work I just repeating what you did 

for trusses. So, that we remember internal virtual work is equal to external virtual work; 

external virtual work what you have here we have a unit load in the a direction and the 

point where we desired the deflection delta there unit virtual load at that point whatever 

displacement that it moves due to the actual applied load that will be the external virtual 

of delta times one delta are what we can call this w x hat we want it w x hat to be delta. 

So, w x hat dot one and what is the in as a external virtual work internal virtual work 

internal virtual work in general we had said the actual displacement times the internal 

forces that arrives little unit virtual load, that in the case of continuous systems we can 

write it has sigma epsilon v d v the entire volume we have to do sigma epsilon v d v that 

is what you have. So, what is sigma that is due to the actual load that we can write sigma 

is m y by i, where i is a second moment of area y is the point where you are measuring 

stress from the neutral plane in the y direction that is sigma, what is epsilon v it will be 

bending moment m and to y again to i. Since we want strain now due to unit virtual load 

the e also well come in the denominator that is what we have. 

Now, we substitute that here we want to entire volume I write sigma which is capital M 

bending moment to the actual load and then y by i and then x l 1 we will be small m y e i 

to d v right. So, now, this one we can see that in the cross section you have certain things 

m m and i e do not vary because, that the cross section you have bending moments and 

you have cross section second moment of area. So, I can take them out I can split in two 

parts I will do from 0 to l length. 

And then I write m m by e and i square there is this part which is the area of cross section 

because we need to do I will have y square d a. And then I will write d x d v is written as 



d a times d x when I do that what I get is 0 to l m n by e i and then this quantity here this 

quantity the definition of second moment of area that is i that i and i get canceled leaving 

only this much right. 

So, that is basically is out of d x hat. So, whatever be needed we got it as m m by e i d x 

0 to l. So, let me 0 to l. 
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So, I can now write my problem minimize with respect to d of x integral 0 to l a d x that 

is volume subject to our deflection constraint where I have m m by e i. So, what we 

assume is that I will say is proportional to area of cross section that is true when you take 

b the breath or bit of the beam has the variable. So, I can write i alpha a alpha is 

something in the case of rectangular cross section we know i is b d cube by 12, but I can 

write as d square by 12 where d is our thickness d square by 12 into b d that is nothing, 

but area. 

So, in our case is going to be come t square by 12 into a right. So, this t square by 12 let 

us call some alpha some no anywhere in thickness we have that. So, I can write it has e 

alpha a d x minus delta equal to 0 this is our problem statement this calculus of variations 

for which we write Euler Lagrange if I do that I will get the solution this is do that you 

are not familiar with Euler Lagrange equation you have to look up for that.  



So, Euler Lagrange equations for this one we write the lagrangian and then write Euler 

Lagrange equations. So, when we do that we get this equation. So, first we write 

lagrangian which will be 0 to l a and there is a lambda as we had earlier a plus lambda 

times m m by e alpha a d x minus of course, there is 0 to l. So, this is also limits of 0 to l 

and then delta t x that it has the area which is like a constant. So, that we contract worry. 

So, now, Euler Lagrange equations are dou l by dou a minus 12 if we actually no need d 

by d x of dou l by dou a prime and all that, but here a there is only a. So, this equation is 

simply dou l by dou a if you do what you get is the first one let us to 1 because area is 

there plus actually becomes minus because a is in the denominator. 

So, you get lambda m m by e alpha a square equal to 0 and that gives us area cross 

section area cross section is going to be this lambda m m by e alpha square route. So, 

you get area cross section like we did for trusses. 

(Refer Slide Time: 23:39) 

 

So, let us look at that not for one beam one beam is there and then how do you get 

lambda lambda we can get in the previous one by going back to this constrained we 

know area now for that contains lambda we can single equation lambda we can solved 

for that we can solve for lambda here now let us move from one beam to several that be 

there in a ground structure minimize a i l i. Again volume that we are doing respective a i 

now not one this a now will have several of them there will be a 1 a 2 the cross sections 

up to a n. 



So, in a ground structure and your taking the sum of all of those things for or inter up 

integration now we have l i, because the assume uniform cross section m m by i i e 0 to l 

we do just l i comes here the length of that beam element in a ground structure each 

beam element has uniform cross section you take this, then all the things where defined 

as before for i-th element you have bending moment due to the applied load bending 

moment due to the unit virtual load. And this is second moment of area that is not written 

here second moment of area which we also assumed to be equal to alpha times area cross 

section as we jested is in delta is desired deflection. You can write the lagrangian it is 

now find where it optimization and then we do this dou i by dou i equal to 0 that gives us 

the area of cross section. 

Just like what we had a continue system for it is for each bema member how do you find 

the lambda. 
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So, we go to the deflection expression there is mutual strain energy as we had defined we 

can use this that just repeating what we have is statically determinate beam we can get m 

and m easily if it is statically determinate in determinate. We have to make the 

modification that we cannot pose the scroll in terms of bending moments, but pose in to 

transmits displacements will do that. 
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And then we also has this question what if the product capital M small m is negative that 

can happen when that happens at some point area of cross section will not be real 

because, it is send is square route sin and this is after solving for lambda this is actually 

square route of lambda. 

So, we can solve it provided this product is positive always, but it need to not be for 

whatever applied load that you have whatever desired deflection direction you want. So, 

because negative areas are imaginary not negative areas really it is this quantity 

becoming negative then becomes areas are imaginary. So, they are not a load. 
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So, just like for the trusses we modify the problem by putting strain energy constrained 

strain energy is going by m square l by twelve for a e for a beam element. So, we put that 

constraint and we solve the problem then we find like we did for the trusses we get this 

extra term which is m i square that is bending moment to the applied load with applied 

load square. So, if you choose this s e star properly we can make gamma large enough. 

So, that whatever negative thing we will be there multiplied by is lambda over all be 

communicate faster. 
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So, we tried to modify the problem. So, that in all situations we get the solution how do 

you find these lambda and gamma sin has before we have to solve this equations when 

they become active this become equal to this becomes equal to you would have area of 

cross section in terms of this lambda and gamma and known quantities m i and capital M 

i small m i you can saw. So, this is not just a mathematical modifications is actually a 

physically meaningful, one will be want certain compliance here we also we took would 

certain stiffness requirement that is why a mechanism to make sense. 
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So, with these two equations if we solve for lambda and gamma we are done. 
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This is when we have statically determinate things where if you solve numerically and 

solution exist always need not it depends on the values of SE star and delta and which 

points your applying force in what direction you will ask for the deflection in all that. 

But in a solution exist it do not be any unique either, because then only in equations we 

are taking about the same argument has we had for the trusses. 
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Now, we can also go to statically de indeterminate case where this type of doing where 

we had p’s for the trusses now they will be replace with m, m, m and this will be the 



alpha will be coming because, area moment of inertia second moment of area we are 

calling it proportional to areas. So, alpha A i that is what we have instead now we can 

write in terms of these also becomes capital M and small m and this alpha will be there is 

a trusses we copied. 

Now, this one of course, it does not change it just the stiffness matrix k now will be for 

the beam elements of frame elements truss of it will be exactly the same. In fact, will be 

the same for continue structures also where only our interpretation of capital U which is 

the displacement vector under we applied load and then small u which displacement 

work can be a unit virtual load afraid at a point in the direction in which we want a 

deflection delta you can pose a problem this way and saw not for now trusses this is for 

frames. 
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So, we have this we can do just as we did for the trusses and we can get this solution like 

we did earlier we get what we call a joint equations which give you this multiplied 

corresponding to be state equations that we have for the real load. 
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And let us go back in look at the, this one this is the equal equation for the real load and 

this is for unit virtual load. 

There are ways to evaluate these as we done for the trusses the same thing course if we 

slowly look at all these expression that we have we understand what we mean. 
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And then we put it all together, because the optimality criterion which can be used to 

fund area cross sectional of each other thing in the ground structures. 
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So, let us look at how to understanding the method let us take this ground structure for 

something like these where we applying the force this way we want this point to moved 

on it is non-intuitive when it is pinned at these points, actually it is fixed not actually 

pinned it is not like this these actually fixed like that look at that is how the structure that 

we are going to have it is actually fixed. 

Apply the force it should come towards use is non-intuitive applying a force like this and 

your asking for 0.2 moved on like this that is exactly what we get. So, this is fixed here 

he did not use a support here it is using only supports at this point and this point you can 

actually see when your pushing up is actually coming down. So, you can see that mini 

elements are removed right from here we have this element, this element we can trace 

from based on this and this course all the way and this is there other colors other than red 

shows that they are thinner narrower than the other once that we have here relative wet is 

also shown in this diagram. So, it is somewhat like this I am just trying the element that 

is there other things are actually removed. 

So, this is there, this is there, this is there and one of this is there and a few of these are 

there you we can we can see what are removed what are remaining right, and this one I 

have the mechanism for you to see of this words. So, here the exactly what we have, in 

fact, we compared with the figure and what is shown here the elements are exactly the 

way they are when I apply the force that and pushing it up here like that and you can see 



that this point is actually coming down just I see want I am pushing here that point is 

coming down it has a amplification factor of both seven that came from this solution 

notice that it is actually a symmetric. So, asymmetry was introduced to in this thing and 

it gave the solution like this. 
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So, we can remove the things here and get the optimal topologies right. So, to conclude 

again we have use this mutual strain energy compliance and stiffness formulation, both 

statically determinate frames now not trusses and indeterminate also we can handle we 

can do topology optimization of frames which will also little linkages as we will see in a 

future lecture. 



(Refer Slide Time: 34:21) 

 

And the reading will be from this paper that had considered way something and optimal 

property which also we will discuss later to see, how we can generate these examples 

which are taken from this paper, where we can say what is the property of such optimal 

topologies it will have a ratio of two things constant throughout the structure; as we need 

discuss in the future lectures. 

Thank you. 


