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Hello, this is the 4th lecture this week, last 3 lectures we discussed Elliptic Integrals the 

theory and the 3rd lecture we also some implementation in mat lab. Today we go a little 

further and then see what we can do with Large Displacement Analysis of a cantilever 

beam. So, we look at a particular idea today which is called Kinematic Approximation of 

the locus of the tip of the cantilever and what we can make out of that. So, let us look at 

this particular concept of kinematic approximating the locus of the loaded tip of a 

cantilever beam. 
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So, let us recall our Elliptic Integral Solutions the essence or the gist here we considered 

3 cases; where there is Purely Transverse Force like in this over a 1st case and there is a 

Inclined 1 2nd case there is a force and a moment we can also consider a case where 

there is inclined force and moment and so forth. When each of these 3 cases that we 

discussed there were corresponding equations that we needed to solve, that is in this 

particular case the 1st 1 we need to find the value of p in all these cases we need to find 

p, we have to solve this Elliptic Integral Equation to find p once we have p we know 



everything else, similarly in the case of inclined load the alpha is there for given alpha 

and force and E and I again we have to find what p is for given length L prime here if 

this is L this is now L prime and this is again L, the moment and the force we can see 

where the moment is and of course, force is where it is.  

So, in each of these cases we have to solve the respective equation to find p once you 

have p everything is known about the elastica that we have talked about in the last 3 

lectures. 
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Now let us see what we can do with this for Compliant Mechanisms, let us look at this 

loaded tip and its coordinates. So, that we can trace that we call the locus, locus are 

loaded tip as the force is increased from 0 to some value and how does the cantilever 

deform is what we have seen, now let us pay attention to the locus of the loaded tip for 

that we start with this non dimensional number eta and then this phi B which as p in it 

that p we have to be find as we just said once we find that p and this phi B is known to us 

that is the change of variable corresponding to theta equal 0 where the cantilever beam is 

fixed.  

So, when the beam is like this point is what we called B, that is why I am calling phi B 

rather call me phi 0, phi 0 is when this bends like this when we extend it over there this is 

where phi is equal to 0 here phi is equal to phi by 2, if we recall that is what we have 

then we get w and x by fixing the coordinate system over here, this is x and that is w the 



tip here what kind of locus it would have is what is given by this 2 equations once we 

solve for p, as you vary the angle phi that goes from phi equal to 0 all the way in fact, 

this angle that we have this is should not be phi by 2 it should be also phi B we have and 

then should be phi for any angle phi by 2 at the end. So, this should be changed to phi 

that is what we have we can get any point. 

(Refer Slide Time: 04:36) 

 

Now, let us plot it that is what I have done here using elliptical solution this is plotted the 

red curve it has an interesting property as a change this force from F equal to 0 larger 

larger number the cantilever beam which goes which deforms like this that what we have 

seen. So, the tip is what we are plotting here coordinates of the tip and it as an interesting 

property that it subtends an angle of pi by 8, no matter what this length is what material it 

is that is E value whatever it is and whatever I is that is cross sections property 2nd 

moment of area irrespective of what those are if you were to apply large enough force the 

locus of this loaded tip will trace a curve and that curve eventually will make with the 

horizontal that is parallel to the beam and angle pi by 8, this is something that we can 

derive from those x Land x by L and w by L equations. It is not straight forward, but you 

can get there. So, there is something very fundamental about the way the kinematic 

works here I say kinematics because kinematics is about geometry in motion whereas, 

cantilever beam is in motion because of the force that is applied it has some inherent 

invariant pi by 8. 



So, there are many such insights that 1 can gain in this large displace analysis of beams, 

but what we do that with that is our question now. 
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Let us say we take this problem we have a beam here which is fixed at this point and it is 

pinned over here and I have 2 rigid bodies. So, we can call this a partially Compliant 

Mechanism, if I apply some force over here its bounds to move how does it move how 

do we solve this problem, that is if we are given this beam we know its modulus 2nd 

momentum of area and of course, the length we know this let say when apply a force 

here how does it move its like a R R rigid body change with some spring added if I look 

at the elastic segment or beam as a spring then it is spring loaded and it will then apply a 

force is going to move by certain angle of rotation here, as well as angle rotation here 

and then here how does it move? If I want to ask that question can we do then the answer 

is yes we can solve this problem because we know how to deal with the large 

displacements of beams now it is fixed and pinned when this moves, let us say apply 

force here or apply a torque over here this is going to move this beam will have because 

a pin joint will have force in some direction as this pulls, when it pulls it is going to have 

a component along that and a component along this there is a transverse force, axial 

force we know how to deal with that based on the Elliptical Integral Solution. So, we can 

actually solve this problem. 



How would this problem what I have changed now is that it was fixed here in the earlier 

slide it is also fixed now, in this case because of that force if there is a force, let us say in 

that direction here because we are not allowing it to rotate there will also be a moment 

that comes over here. So, we have force at this point which can be again resolved 

perpendicular and parallel we have 2 components this and that transverse force and then 

axial force, but it will also have a moment. Since we do know how to handle transverse 

forces, axial forces and moments we can actually deal with this beam hence we can 

actually solve this problem, in all of these cases the p value is the 1 that we have to find 

when we do that how to draw the default profile of the elastic segment. 

(Refer Slide Time: 08:58) 

 

Another variation here we have 2 elastic segments and then we have force here, can we 

do this? Yes we can because this is a force. So, this point there will be a force in some 

direction, force in another direction which will balance this force let us say this may be 

other way whichever they balance then there will be again transverse axial transverse 0 I 

mean transverse axial have to do perpendicular to that we have that and this. So, we can 

actually deal with this problem as well since we know how to deal with elastic beam 

segments that can experience transverse axial moments. 
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Another variation so here we have fixed and fixed on all sides this also we can actually 

do, once again in order to do that what we need to is take this different cases and find the 

value of p in each of this cases and this p will vary from configuration to configuration 

meaning that if we have a configuration given here in this instance when apply a force I 

need to know what p is for that force, when it moves the beam condition would have 

changed because beam has moved and the force might be different we have to again find 

the p. So, from configuration to configuration we have to find p. So, we can get the 

deformed shape that is changing continuously as applied force that can be definitely 

done, but it will not be trivial to do, but once we understand elliptical solution 1 can 

implement such a procedure, but it is going to be complicated. So, what we say is that we 

have to find p for each configuration depending on how the loading is if it is a pin joint 

will only have an inclined load if there is a fixed connection then we will have the 

moment also coming to the picture along with transverse force and possibly axial force 

meaning it can be inclined load with a moment we can do that, but it will involve lot of 

complication it would not be computationally inefficient to do that, but we have to do a 

lot of work to set up the equations and solve this equation. 

Again solving this equation is not that difficult because the range of p is very small it 

will go by go from 1 over square root of 2 to 1. So, that is what is going to happen in any 

problem. So, it is not that difficult to find the value of p using any simple numerical 



method because we saw that p is well behaved with respect to calculating the length of 

the elastica part, but still we have to do lot of work. 
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So, we ask is there a way out, is there something where we can avoid all that 

complication that we have to deal with and yet we able to deal with Compliant 

Mechanism that have elastic beam segments where we do not want to go to finite 

element analysis and do something about it is there a way out, it happens there is before 

we discuss that. 

(Refer Slide Time: 12:15) 

 



Let us look at this Locus of the tip under various transverse loads. So, transverse load is 

0 and then its slowly increasing load is force is 0 here force is some F 1and F 2, F 2 is 

greater than F 1and so forth. So we have force increasing its going there when we see 

this do we seen any pattern is the question that we should ask do we seen anything 

interesting here looking at the locus is than any interesting. 
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It may help to look at this picture where I have drawn it using the mat lab course that we 

saw in the last lecture, where I have taken the case where F is the this way meaning there 

is transverse force and there is a compressive axial force and the other case we have 

transverse force and there is a tensile axial force. So, that is the color coding here we 

have the red 1 and the blue 1 and you can see in some cases it going down like this some 

case it has gone. 

But all the points if you see the locus is highly constrained and I varied this forces quite a 

bit over a wide range of forces before Finite Element Analysis Elliptical Solutions say 

that no something bad is going to happen, that is beyond which there will be something 

bad happened to this cantilever meaning that we have really pushed it to the limit and if 

we see it start out like a tiny sliver that is what it is. The tip does not go outside this range 

no matter what you do we are fixing it here apply all kinds of forces only transverse 

loads right now I have not applied moment here, moment will make it go anywhere 

actually I can take this and put it wherever when I do that I am not only applying 



transverse forces, but also moment load, but in this case I am applying only transverse 

forces that is force can be that way or this way this is what you are getting. So, is there 

any pattern that you can see we see that kinematically the loaded tip is constrained to 

move in a very narrow, if I neglect this which is like a kind of buckling when I am 

compressing load and applying if I have a beam like this let us say a transverse force 

now we apply an axial load there is actually tends to turn back a little bit. So, it will this 

beam would turn something like that and those things coming little inverse that where 

you see these little blue arcs and these things have tensile force if I have axial force in 

that direction it will stretch out a little bit. So, I can go little farther internal force, so red 

ones have gone little beyond for the same force, but a little component acting axially. 

But what you need to notice is majority of the thing is that that is in enclosed in this 

small sliver that is where the tip is able to move. So, kinematically the tip is constrained 

to move in a tiny sliver light part of a moon soon after the new moon the tiny sliver is the 

area in which the tip is moving. 
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And that should give us a clue as to what the kinematic constrain here is with an elastic 

segment, if you have not gone in that now then I would say that here where it is it is like 

a eureka moment or “Aha!” as we say I see a circle there where is the circle the black 

one that I have the dash line the black 1 with some center somewhere we see that I can 



actually draw a circle right and that means, that sliver can be approximated with a 

circular arc. 
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And the circular arc can be more clearly seen if I only apply the transverse load not the 

axial load just the transverse load, when I apply then I can see that a circular arc 

approximates the locus of the tip quite well I would say up to this point it right on that 

circular arc and after that deviates a little bit you probably do not have compare that 

actually undergo this much of displacement even if it is the error is very small as you can 

see this part is very very tiny if you look at the coordinates of this 1. So, in a height like 

that from there to here it is only that much is the error absolutely little bit. 
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So, circular arc approximation is a pretty good 1 and who had that “Aha!” moment it 

were these 2 people who did this wonderful work back in 1968, it is ASME transactions 

paper 1968 where they are talking about Kinetostatic Synthesis of Flexible Link 

Mechanisms, at the time the word compliant was not coined yet (Refer Time: 17:47) they 

did it much later. 

So, in 1968 they had worked on this and they saw this Kinematic Constraint that exists in 

the Locus of loaded tip of a cantilever beam under transverse loads, axial loads, but no 

moment. 
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What they do. In fact, they had this profound insight into this problem this is the citation 

of this wonderful paper in 1968, they actually said there is a figure from their paper this 

if you have a beam of length L they said that if I take only 5-6th of that length put a 

center there, then the locus of this now here it is fixed 1 and there is we are applying load 

in all kinds of directions because we said that when an elastic segment is part of a 

mechanism with rigid bodies or other things, at the end there will be loads in all 

directions if there is a pin joint if there is a fixed 1 is also a moment, in this particular 

paper they consider a pin joint there. So, loads can come in any direction meaning that 

there is a transverse component, there will be a axial component in that case they saw 

whatever sliver I showed they actually have drawn this with a force in the direction beam 

may bend like that force in this direction bends like this force here it bends different way. 

So, for each case they have actually drawn these at that time just coming then. So, they 

had done this calculation and they saw that and they came up with a suggestion that if 

you take 5-6th of the length and move over the fixed pivot and put it over here right this 

kinematically approximates that circular arc right circular arc approximates the locus of 

the free tip that is a profound insight that is where going back to their work more than 50 

years later. 
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And here is a small except from their paper, where they say there is no literature 

recording any previous work toward this problem of synthesis that they have done, they 

have not stopped at this profound insight they actually do synthesis with this meaning 

that they design Compliant Mechanism and they give something Sieker how we ever 

discussed the design of mechanism that flat springs and they are giving credit to others, 

but somebody did vibrations some large oscillations and so forth. But this particular way 

of synthesizing with this kinematic abstraction they have was really new since I have not 

found any work before this and they are actually right there is no previous literature for 

this a pioneering paper in the area of Compliant Mechanisms. 
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And this is what we said no here is the tip and you say that it is fixed here and we have 

the rigid now we can assume that this is rigid body and whatever the beam is going to do 

this rigid body is going to do as per as this point is concerned that is what is important 

kinematics. 

So, the point that attaches to something else if we know how it is going to move we can 

deal with it, that is what is Burns and Crossley contributed to this. The locus can be 

approximated the circular arc for a very large range of motion you see this angle that we 

have, this is deforming you can see this if it were to go there it will be something like 

this, there is a large deformation of a cantilever beam and they are able to get away with 

a rigid body replacing the beam and that is the wonderful thing about this concept 5-6th 

of the length and you have to move the fixed pivot by 1-6th to come here that is 5-6th 

this is going to be 1-6th. 
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So, now with this insight can I solve this problem; this problem is something called 

Function Generation in Kinematic Synthesis that is what they have done in this paper. So 

if I were to give this theta input if I have some partially Compliant Mechanism like that 1 

elastic segment elastic beam, input is theta rotation of this is psi because we do know that 

cantilever beam here when it deflects end 1 is going to have an angle that is important for 

the middle 1 right if you call that psi if this function is prescribed let us say I have 

function like this function psi is a function of theta, if this is given to us can I synthesize 

the mechanism like this that is the synthesis problem what is called Function Generation. 

Before computer there is to be a mechanical computers where most of the mathematical 

things could be done mechanically that is where this Function Generation terms come, 

that is if you say I want a sign arc here or logarithm or something then I can design the 

link lengths of these or rigid body lengths and in this case they wanted to remove a rigid 

body put an elastic 1 which they called Flexible Mechanism what we today call 

Compliant Mechanism they were able to do that. 
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So, given a function if you know what you want coordination between theta and psi. So, 

you could actually do this, they also dealt with 2 rigid bodies and here is where the 

Elastic Segment is in the middle then again we can generate different functions the 

previous 1 we have sudden capability is a another capability in terms of the kind of 

functions it can generate. 
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Or we can also have instead of just the function that what we have we can also have a 

path instead of function here, we can also do Path Generation meaning if I were to 



extend this body a little bit that this body I can chose a point that point is going to trace a 

path what we call a coupler curve that can also be done. 
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Now, it is not between psi and theta we can actually generate a path that is also is 

possible. So, there are number of things that we can do what in this paper they were able 

to do what is this over lay method using what call a Flexible Mechanism or Elastic 

Mechanisms they use the word Flexible Mechanisms, what it did was if we know theta 

and phi what I call psi they are using the symbol phi. 

So, if this moves by this much they should be move by this much. So, that is a geometric 

way of synthesizing mechanisms of that time, they were pioneering in sense that they 

actually did that when 1 rigid body is replaced with a an elastic beam and there were able 

to develop this over lay method to design mechanisms, that why they said there was no 

prior literature where they had anybody had done that kind of a synthesis methodology 

where 1 element was replaced with an 1 body was replaced in a elastic segment. 
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Now, with that thing can we solve this problem? That is when we are given a force here 

an elastic segment can I do this, instead of movement that is Function Generation where 

theta is given and phi is there now we are giving a force and we want some output, in 

order to do that we have to somehow capture the elastic behavior of the cantilever beam 

beyond this kinematic. 

So, we have discussed in this lecture the kinematic abstraction of the large displacement 

of a cantilever beam, but we also need to look at its elastic behavior meaning what 

resistance this cantilever beam offers to the deformation if we considered that, then if I 

force and I say this is this was our theta if somebody gives us this function that is force F 

and say that it should like this can I get it, that is what is given is this now theta as a 

function of F applied here if that is given can we design this mechanism that is exactly 

what will be equivalent to designing a spring here, I am showing angle versus force I 

could have shown force verses angle that becomes a spring a non-linear spring that is 

what Compliant Mechanisms are in some sense can we do that in order to do that, we are 

to also capture the elastic behavior of a cantilever beam as it undergoes large 

displacement that is what will consider in the next lecture. 
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For this lecture further reading needless to say that this paper of Burns and Crossley is 

very important and they also had written a paper 2 years before that, which is Structural 

Permutations of Flexible Link Mechanisms, that is which if we take a 4 bar linkage you 

can replace a the crank either this or the 2
nd

 crank the elastic segment or the coupler or if 

I take a larger linkage such as Stephen Sense what’s want to change. Then you can 

replace rigid bodies with the flexible thing they had done this permutations 2 years 

before that and 2 years prior to that there is this wonderful page with thesis at Yale 

university of Burns and Crossley as adviser, by the way Professor Crossley was a pioneer 

in Kinematics in many ways for Compliant Mechanisms, he is really a pioneer because 

he had this wonderful insight and these are some of the papers that we can learn from to 

see how this field started with this very important insight of abstracting the kinematic 

behavior of large displacement complaint beams or flexible beams and that makes it 

Compliant Mechanisms a mean able to Rigid Body Motion Analysis and we will discuss 

the elastic aspects in the next lecture. 

Thank you. 


