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Prof. G. K. Ananthasuresh
Department of Mechanical Engineering
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Lecture — 14
Elliptic Integrals and their use in elastic analysis

Hello, in the last lecture we looked at large displacement analysis of a cantilever beam
with a load at the free end of the beam; one end is fixed other end there is concentrated
load f and we used Elliptic Integrals based solution which is completely analytical where
we were able to convert the differential equation in the transverse displacement w in
terms of only one variable called p which was related to the slop at the free end or the

loaded tip and was able to solve using elliptic integral solution.

Today we will extend that concept and in fact make it even more profound by using what
is known as elastic similarity principle. So, let us look at this elastic similarity principle
which enables us to solve many other problems than a cantilever with a load at the tip.
So, this elastic similarity in the large displacement analysis of beams is quite interesting
and this is a slightly difficult topic. So, we should pay attention to whatever we are

doing.
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So, let us recall some of the important equations that we had began with in the last

lecture and these are indicated here. If you look at the first one it is going to indicate this



theta L and theta L is the slope here that is theta L where we have arc length. So, we go
in terms of this parameter s which is measured along the deformed beam and that s is
equal to L that theta L any other point if | take let us say intermediate point let me use a
different color if use intermediate point over there now the slope at that point if | were to

write that will be just theta.

So, what this equation here shows is that when I integrate from 0 to theta L; then the
whole thing is equal to L where theta is the variable here which when you go from here;
here theta is equal to 0 because the slope is 0 there and then increases up to theta L when
I do this limits from O to theta L; this particular integral which involves the force F and
young's modulus is E movement of area second point of area I, then | will get back my
length L, on the right hand side we have 0 to L d s all this came from d s by d theta
which is curvature and we came from that equation. We also did a change of variables
from theta to phi. So, here we have the same equations, so these are same equation that
now is in terms of phi rather than theta. Our limits also have changed as per the change

of variables equations that we had used. This was done in the last lecture.

(Refer Slide Time: 03:42)

Displacements at the loaded tip
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We also did in the last lecture; the following that when we have this if | indicate this as
the w axis and x axis as shown over there; that w L by Lx L by L that is w L by L will be
from the original beam to the deformed one, that is w sub L and x L is from there to here.

Note that we are indicating the coordinate system in the deformed profile of the beam



and not in the un-deformed one. So, this is the deformed profile of the beam that is the

characteristics of geometric non-linear problem are large displacement problem.

So, here we indicated this in non-dimensional form w L by L equal to something which
depends on this non-dimensional factor eta which is square root of F L square by E |
where we know all the quantities; F is the force, L is the length of the beam before and
after we assume that length is the same, young's modulus E, second point of area | and
then there is this p that needs to be solved; if we go back to the previous slide that p is
over there that depends on this value eta, if | know eta calculate p and by vice versa.

So, we have that p that depends on eta the whole thing is a function of eta which is non-
linear function because, these are capital F is the elliptic integral the first kind complete
because it is pi by 2 incomplete phi naught or that value at p and then we have second
elliptic integral E complete and then incomplete. So, non-linear function of eta and x L
by L also can be derived like this we had written this, but we had not done this part, but
if we follow the derivation there where we had the horizontal span of the distance
between the point that you have taken the fixed one to where is deformed that will come
out to be this; that was not in the last lecture that in the further reading if you see you
will get that thing it is not at all difficult if you follow the last lecture. So, we have done
this.

(Refer Slide Time: 06:07)
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Now, let us look at this limit of this integral. So, it was from 0O to theta L over there that
gave us this L on the right hand side and the on the left hand side we rearrange little bit
that also comes in terms of this 0 to L d s with this limit is sin inverse 1 over p square
root of 2 to pi by 2 for phi theta anyway is a slope that varies from 0 to theta L at the
loaded tip whereas, the phi has this strange thing that somehow starts at some value
which is sin inverse of 1 over p square root goes up to pi by 2; pi by 2 is some notion of
completeness is there it goes to 90 degrees, but what is this? Why is it starting from here

and what happens if we go less than this?

So, we have let us say if | do the phi axis here let say that pi by 2 is some kind of an end
for this because, theta L these an end of the beam. So, let us say that pi by 2 for the phi is
the end. We are starting somewhere here which is sin inverse 1 over p square root of 2,
what if | go to the other side go all the way to O that is phi equal to 0 at this point phi is

equal to 0 what does that mean? Let us look at that.

(Refer Slide Time: 07:43)
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So, | substitute phi equal to 0 then the first equation that is this one let us go back that is
this one here gives as sin | would say theta 0 let me say that is now it corresponds to
where phi is equal to 0 | should be clear when | say that | mean at phi equal to O that will
give me 2 p square sin square p but sin phi is 0 that will become 0 minus 1. So, what |
get at that point is when phi is equal to O theta corresponding to phi equal to 0 will be

because sin of that is minus 1 that is minus pi by 2.



So, what is happening is that if | have the beam like this and this is what we had said this
angle at this point theta equal to 0 at this point theta equal to theta L, but now we need to
go to a point where this theta correspond to phi equal to O where it is minus pi by 2; that
means, that this one with the respect to horizontal that is what we are measuring right; so
here if | want to use a different color; this theta L that we are talking about we are
measuring with respect to horizontal. So, with that it should become minus pi by 2. So,
that we get if |1 were to extend this curve until this becomes something like this; where
this is pi by 2 since we are measuring from here to here from where it is to vertical
horizontal line. So, this actually minus pi 2 we are going the see here we are measuring
from horizontal in the clockwise direction as theta. Here when it goes counter clockwise
it gives the minus sign. So, we have to go like this. So, in order to have the geometric
interpretation from theta to phi; we take the clue that when phi is equal to O theta is
minus pi by 2. So, with that we will be able to guess what this geometric interpretation of

phi is.
(Refer Slide Time: 10:08)
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So, let us look at this principle of elastic similarity now; keeping in mind what this phi
geometrically means. It is all taken from the excellent book by Frisch-Fay called Flexible
Bars written in 1962 and there is a picture of that taken from that; the notation used in
that different from one that | am using. So, we should not get confused we should see

what symbols stand in his book and in this presentation.



So, we have this one now; what if | extended it beyond B that is what we said to take that
phi back to the 0 value; if I do that then I can interpret this as a point A which has a
vertical column A C double prime. So, originally B C prime deform to B C. Now we say
that the vertical column A C double prime when we apply a load it would buckle to a
shape that is A B C; if | fix at A; then | can actually afford to remove the support at B; |
will still be able to hold the shape of the complete bend profile of the vertical A C double
prime column (Refer Time: 11:37). A C double prime when you apply a load F over
there it would bend like this; | should not show F here because the F is not acting in that
configuration. F is act actually in the deformed configuration. So, again if | were to

remove the support B it will stay the way it is.

So, what is phi now? We have just shown going back all the way from B to A with this
interpretation; now it turns that if | extend it and imagine that there is a point A and there
is A C double prime vertical (Refer Time: 12:14) then | can join this line horizontal line
from A and then let this point go all the way to Q then I get this circular arc or quadrant

of acircle AP Q. So, here is where our phi B is.

So, we have to take this B extended vertically up to P and then join to O remember this is
a quarter of a circle and that is how this phi is defined and that phi is measured in this
manner. So, from horizontal line A O and then O P that inclination is phi B. Again notice
how we got phi will bent from B up until meets a quarter of a circle and then come
down. So, the phi that we measured is actually this angle that we have shown there and
this is the elastic similarity; the way the cantilever beam from B to C prime would
deformed to B C would be same as the vertical column A C double prime would buckle
to A B C and one we fix at A we do not need the support at B and this is the Elastic
Similarity between a cantilever beam and the buckling of a vertical column are abstract

as Frisch-Fay calls.

Now, we have this h here that is the horizontal span or radius of the quarter of a circle;

we need to find that.
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Before we do that let us understand this arc length interpretation in this Elastic
Similarity. Now | am going from theta O to theta or phi from let us say the corresponding
thing here would have been not 0, but it should have been our arc length whatever that
sine inverse 1 over p square root of 2, but what we have done now is | am varying this
phi from 0 to phi if I do; it will go to 0 to some s phi; likewise theta | can go from let us
say a point B or some other things corresponding to this; it should not be 0 0 they do not

correspond some other limit over there.

When | go to theta; | would get s theta that is from O to s theta and the 0 again in fact,
correspond to O this as we already said it is minus pi by 2, when | go to minus pi by 2
theta that will be O to s theta; d s if we do s theta. What does it mean? When | take a
point let us say somewhere over here; then from here to here there is an arc length s; s
phi if | take this point over there again how do | complete the phi? | have to extend
vertical line there and join that to this; this would be my general phi; that phi that | show
here this should be calculated. | have to draw vertical line and join this with respect to
horizontal I get phi when I do this integral from 0 to phi what I get will be that s phi that
is this arc length from here to here; that is interpretation here when I go from here to B |
will get this arc length that in the dash line. When | come from B to C then have to
subtract whatever arc length | have from here to C that is A B C minus A B; if | do then |

will get the original length of the cantilever beam that | had as L. So, this interpretation



Elastic Similarity you can imagine a number of situations using this diagram or this

especially the interpretation of this phi that is the key concept here.

(Refer Slide Time: 16:27).
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Now, let us also look at by knowing that what are the coordinates of the deflected profile
at any point B beyond B any point D beyond B. So, if | take a point D again | have to
take this interpretation in fact, this is not the point | should take. So, we should actually
imagine this will be let us called this point E or something. This is of no significance if |
take a point here; | have to draw a vertical line and join this that becomes my phi D. So,
actually that is not D so, we can call instead of D; E that should be the phi D. So, again
we have to go up here and join that that becomes my phi D. So, if | have that the
coordinates here if | take the w x thing w by L that is this little distance that is very little
how much ever that has deformed that will be w and the horizontal coordinate in this x
that will be x here; that w by L is given by that and x by L is given by this in terms of
whatever angle that we have it general phi D have called so that can be you know phi D
and then from phi B we are measuring and this also will be phi D any point. You also
know the coordinates; this arc and interpretation whatever point you can take a point
here, here let us say | take point here; | have draw by vertical line and join that to this
that becomes my general phi. So, | can take that over there, over there and over there;
then | would get the w at that point from here to there and x from here to there in this
coordinate system of w and x; that is how the this interpretation is graphically and

equations are as what there shown on this slide.
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Now, what about this h; we are not talked about that yet. So, what is the radius of this
quarter of a circle that we have what is that h; that h can be interpreted by knowing that x
by L that from the previous slide where we have discussed it is 2 p by eta again eta is
non-dimensional number that is square root of F L square by E | times cosine phi B

minus cosine phi that is a general one.

So, now what happens when we go all the way to end that is point O where phi actually
becomes 90 degrees. So, that is 90 degrees; then if | go all the way then that cosine phi
that will be 0. So, I get x L that is x is general for any phi; if | take that all the way to the
end which is phi equal to pi by 2 that is from B all the way to C when | do this becomes
0. So, 1 get x L by L is 2 p by eta cosine phi B implies that cosine phi B is equal to
square root eta times x sub L by 2 p L. What is x sub L, x sub L is from here to here that

ismy x sub L.

Now, you can also see that cosine phi B is equal to x L by h; this is x L and h is this
radius here; cosine phi B is also equal to x L by h by comparing these two; we can get
that h. So, cosine phi B is x L by h from here which is also equal to square root of eta x L
by 2 p L and from here we can get h to be equal to 2 p L by eta are 2 p because eta is F L
square by E I; if you substitute it will become L gets cancelled; square root of F by E 1.
So, this square root of F by E I; Frisch-Fay calls it k if we are referring to the book this

will come handy. So, h is 2 p by k in his notation. We are sticking to what we have



symbols that we have use; | am not introducing additional symbol Kk in this presentation.

That is why we can get h also.

(Refer Slide Time: 21:12)
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Now, if we look at non-dimensional portrayal again. So, w L by L, x L by L we had for
complete one here. So, we have that phi going all the way to pi by 2 starting from phi
naught which is what we had in the previous lecture; in this lecture that phi naught we
are denoting as phi B because the O corresponds to in this presentation; where phi
becomes 0 which is actually in theta equal to minus pi by 2 are this phi becomes 0. So,
this is for going complete L both horizontal; horizontal here and then transverse w L.



(Refer Slide Time: 22:05)
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Now, with arc-length Interpretation any other point | take; I will get if I go from phi 1 to
phi 2 then w 2 minus w 1 by | is what | get. | can go from phi 1 to phi 2 both elliptic of
the first kind capital F second kind E; likewise horizontal x 2 minus x 1 by L; 2 p by the
square root of F by E | cosine phi 2 minus cosine phi 1.

So, we able to get any length that is if | have this one going all the way something like
this if; | take any two points let us say that let me draw that circle with same blue color
we had used; let us | have something like this that is a quarter of the circle; if | take any
two points then | have to let me change color again for clarity; I have to do vertical line
and join this vertical line, join this then | get the angles let us call this phi 1 and this is
phi 2. Then what | get if | say w 2 minus w 1 what | get is from the horizontal that we
had; so whatever distance that is there between this and this that will be w 2 minus w 1
and likewise the horizontal distance from here to here that would be x 2 minus x 1 by
taking 2 points 1 over here another over there. So, this is the point 1, point 2 we can get

that in a non-dimensional form.

So, we can actually solve a number of problems starting from (Refer Time: 23:57) that
was vertical like this and original horizontal that we had and anything in between. So,

this means that if there were to be an Inclined Load:;
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So, how does it come up about Inclined Load? So, for we have taken a load that was
transverse to the beam, but now if | take a point such as what is indicated over there and
draw a line tangent to this profile that we have general profile that we have; this green
one still has force; it goes from let us say T to C triple prime that would deflectto T B C
profile under the action of this load F. Again | do not show force F here, because that has
not deformed when that force acts as C triple prime that will change it form T C double
prime to T B C and again we do not have to put the support at D when we do that just
like we had argued about this vertical straight: A C triple prime if we fix this then | do
not need that. So, in the inclined load | can again take this general phi angle; draw a
vertical line to T R and then join R to O | get this, then | can remove this support at B.
This is what again Frisch-Fay gives in his book as if we have turned coordinate system
you see this coordinate system what you had like that has been turned over there; based
on the angle. That angle is whatever angle that this makes with this; we can call it alpha
that is what he also shows an alpha angle here; again other symbols of different in the
book compared to the symbol that we have used in this presentation, but what it means is
that you just have to rotate the coordinate system and do the translation because our

measurement is from here because this is where our x is and our w is.

Now it has moved over here and has been rotated. So, you to do a coordinate
transformation by doing this some translation from here to here and also a rotation

because now it has changed the coordinate system is changed with respect to that if there



is inclined load because the load were to be here it is inclined compared to the original
one which were to be transverse like this an inclined. So, the inclined load if you do; you
have to do this coordinate transformation based on this all that information is right here

in this diagram.

(Refer Slide Time: 26:45).
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Now, how do we use this Elastic Similarity Principle when there is a Moment Load?
Now in this original in this force F it would have deformed like this. Now there is
additional moment M; then how do we do this? It will not be the way it is shown here
because this is for when the force F is acting; now there is moment acting everything
here that is all this portion will change. How does it change? So, what Frisch-Fay
recommends is that imagine now there is a rigid lever. So, this is a rigid lever attached at
point C horizontally and now at a distance length of the rigid lever e which is taken as M
divided by F; we want to bring in the effect of movement at the point C.

So, what he recommends is; let us move this force F from point C to another point over
there which is distance e from here. Now if we see the way we have defined e if |
multiply this F with this e then | get moment here which will be M because e is depends
M over F when | multiply this e with F; | get M and | get back the force F here. So, | am
getting moment and force over here effectively. So, | get the movement M; | get the

force F; if a mass in that there is an extension the beam which let us say deforms to



something like this. So, this C to whatever point this is let us call this D prime that would

deformed to C D and the whole thing also changes.

Now the previous one that we had that h p all that the quarter of a circle will change now
because there is F and M are rather we have F at a farther point beyond C. So, we have to
change that circle exactly same construction only thing is it will become larger as we will

see here.

(Refer Slide Time: 28:51)

Moment load added using
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Now, | am putting that point this O has changed correspond to D at to get right above
that D that D; C D is the extension of this C F which will be longer where the force is

being applied to get this thing.

So, now we have a new thing and | need to get that new h here; in order to get this new h
we already know the e the e again if you go back to this e equal to M by F. Now we can
get that e in terms of geometry here that e by h that e is from here to here which is same
as that h is the new h that we need to find radius of the circle that is equal to cosine phi C
which we also know to be equal to this e by 2 p square root of F by E I that comes from
the way the cosine phi C is defined here. So, from here we can relate this h to e when h is
there h is again related 2 p here.

So, we know everything in this diagram again it takes little bit interpretation; | have put

the original figure from Frisch-Fay's book; if we look at the geometry we get this



relationship then we know the e is a function of h; h is the function of p only unknown is
p now. This p is not the same as that what we had when there were to be only vertical
force at point C; now the fore is acting at this end of the rigid lever or extension of this to
create the effect of moment here. So, you have to recalculate that p; how do we get that

p?
(Refer Slide Time: 30:36)
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In order to calculate that p what we need to know is; this length AtoBisLAB,BtoC
isSLBC,CtoDisL CD; whatwe are givenisonlythisLAB,LBC; LB CequaltoL
is all we know, but we can write that with our arc length interpretation this L B C or L

equal to L B C is an integral that goes from phi B to phi C.

We already know phi C from the previous thing; cosine phi C equal to this; we already
have h was p by square root of F by E | that we have derived. So, phi C is known to us
and phi B is anyway known to as because that was sine inverse 1 over 2 square root of p.
So, these two limits are known. So, | can get this L B C by doing that elliptic integral of
the first kind that we had; from the arc length interpretation that has the unknown which
is p. So, p will be the unknown in this equation. So, since | know L; I can calculate p;
once | know p I can get everything here that is when we change that force over here our

radius h has changed h depends on p that p is obtain from this equations.

So, you can solve using this principle elastic similarity a case with moment load as well;

you can get even more complicated what if there are Two Transverse Loads?



(Refer Slide Time: 32:10)

Two transverse loads

Teetaie ‘.

BN

y L

Frisch-Fay, R, Flexible Bars, 1962. | S00@

So, there isa P 1, P 2 here | taken the figure form Frisch-Fay book directly and again his
symbols are different he uses psi where we have used theta and let us not get confuse and
of course, use P for force where using F for force and so forth, but the concept is clear
when there are two transverse loads like this we know in the linear case we use principle
of superposition whatever we get with P 1; displacement we add with the displacement
we get when there is for P 2. So, that cannot be done with non-linear, but this elastic
similarity principle lets you do almost that it is not linear superposition it is some kind of
non-linear super position using this graphical construction and the corresponding
equations. So, if we do that here; this is a diagram from Frisch-Fay's book where we

have this picture where the original one is shown with h equal to 2 p by k.



(Refer Slide Time: 33:16).
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Again | said uses a k which is square root of F over E I that is a new symbol we have not
introduced, but he uses and he says that form A to B there is a P 1 and then after there is
a P 2 over here at point C. So, if you want to know what is A B deformed; he says
introduce in a new force P that is over here you see that P over there he say the introduce
P such that this P is equal to P 1 plus P 2 because at point B you would feel the effect of
P 2 as well as P 1; when we do the shear force diagram and also you would feel a
moment which is this P 2 times whatever this distance b is that distance b So, it defined
thisbasbrbygwhereisgisP 2 by P 1and b ris this distance; it is a lot of geometric
construction correspond that each of that there is an equation that we can see, but what
he is saying is that if you want to know the profile from A to B; you should have the total
force P 1 plus P 2 put at it distance which is b r such that the movement here that is felt is
P 2 times that distance from here to here which is b that is how you puts that.

So, we gets that and corresponding value of P which is over here you have one equation
the end point unlike the previous one; it is not equal to pi by 2 that phi B here is not
equal to pi by 2 which was the case earlier. So, that phi B is an unknown this is an
unknown here and of course, the P is also is an unknown. We have 2 unknowns here and
then we have this other one B to C which he says we simply another one of this where it
is at B imagine like a cantilever beam from going to that C which is straight forward

which we have discussed earlier that gives you B C.



So, A B is controlled by one P and then B C is controlled by another one which is P 2,
this P 2 is an unknown or unknowns now are three. P 2 this P the original P is there and
then phi B what equation do we have again uses geometry that this length b r can be
obtained in two different ways because we have we know various distances here that is if
I look at this distance b that comes from cosine one and b r comes from the cosine for the
first case if | take this triangle from here to there, here to this b r goes from here to there
to here, | will get b r other one goes from here to there to here, | get that b, b and b r are
related the way he defined. So, he gets that additional equation. So, we get previously
from the length equation here we get for P 1 equation and phi B comes from the cosine

equation.

Now, the third equation is this relating this b and b r. He gets 3 equations, three
unknowns and solves it. It is a lot of geometric construction where the corresponding
equations it works studying carefully to see that it actually works out in a way that when
there are two transverse loads you have three equations and three unknowns. Unknowns
are phi B, p and P 2; that p corresponding to this, there is a P 2 corresponding to this; we
are superposing in them; these are non-linear thing yet you are able to superpose in order

to get the combined profile.

(Refer Slide Time: 37:38)

What if there are n loads?

In fact, he argues that if there are n loads let us say | have a beam where there are n loads

any number there is let us say F 1, F 2, F 3 and F n if you have that then you would do



these diagrams each one of them and unknowns will be 2 n minus 1 here and so many
equations you have to get. When n equal to 0 which are the first case we have done in the
last lecture we had only 1 unknown which was that p that we had or that p was related to
the slope at the end theta L; when n equal to 2 which we briefly discussed now
unknowns are 2 times 2 4 minus 1; 3 unknowns which were 2 piece which were p and
another P 2 for the second arc that we considered and then there was this phi B at that

point where it is.

So, when you have more loads; you will have more and more unknowns, but what is
interesting is the differential equation originally was convert equation 1 variable; when
there are 2 loads then it becomes 3 unknowns; eventually it becomes 2 n minus 1
unknowns. It is a very efficient where compared to Finite Element Analysis; it may be
difficult to believe, but we have few words; instead of solving differential equation here
we solved only elliptic integral equation with one unknown p. In the case of two loads
we will have let us say two differential equation load 1, load 2. We are not supposed to
add them up linearly; we had to have non-linear one. So, it becomes a difficult one to do,
but now we are able to do it in few word variables and able to get the solution.

(Refer Slide Time: 39:36)

Further reading

* Frisch-Fay, R,, Flexible Bars, Butterworths,
London, 1962.

All that | have discussed today is from this book called flexible bars. Those of you are
interested to study this book in the chapter 2 in that which explains all of these in lot

more; what we need to understand now is that using this principle of elastic similarity;



we can solve a cantilever beam with that tip load in any direction, Inclined load is
possible and moment load is possible, multiple loads are also possible. So, anything we
can be done using this principle of elastic similarity. It was a work done in 1960s;
somehow it seems to be forgotten, but there is a big need to get it back if you want to do

large display analysis of flexible bars.

What we will see in the next lecture is a set of examples to understand whatever we have
discussed in the first lecture and this lecture that is this week first lecture and second
lecture; third lecture of this week we will do some numerical examples to understand
this; later on will see how this insight can be taken further to be useful for compliant

mechanism analysis as well as design.

Thank you.



