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Hello we were discussing  Eigen value problems in the last lecture and that was in the framework 

of calculus of variations okay so calculus variations allows us to deal with the free vibration 

problems which lead to what we call I Eigen value problems continuous so we have Eigen values 

and corresponding Eigen functions we discussed that in the context of a bar but we can apply it 

for beams cades membranes actually any structure we discussed the buckling case we will 

discuss that today in detail. 

 

So that we can also design a strongest column where we minimize or maximize not minimize 

maximize the buckling load all using calculus of variations let us look at some of the basic 

equations that we call Eigen value problems okay we discussed the case of a string first and the 

string problem. 
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So if I were to draw a string which is at both ends it can be pinned also there is tension T in it 

that is what we consider and that gave us the Eigen value that that governing equation for that 

was this okay that is the governing equation this is the governing equation governing equation 

for free vibration that is when we Gateaux Eigen value problem for elastic structures and that 

gave us this problem which we call Eigen value problem okay from the governing equation we 

saw by using the separation of variables technique how we can get this Eigen value problem and 

λ  is our Eigen value and Ø is our Eigen function. 

 

Okay there are many solutions infinite solutions for that hat is what we discussed last time using 

framework of calculus of variations similar thing can be done as we have written equations here 

this one is a governing equation for a an axially deforming bar governing equation for again free 

vibration free vibration of a bar so a bar looks like this basically you have written it for uniform 

cross section that is why EA or outside of the way would have written EAU´ and whole prime. 

 



Okay we have a bar with let us say fixed and free where it is deformation is this direction that is 

u(x) and that is the free vibration again for it if there is a bar and you pull it and it is going to 

vibrate there are different natural frequencies again infernal natural frequencies that come about 

in the form Eigen value problem if you use this governing equation just like we had done for a 

string okay. 

 

Now this one over here as you may recognize is for a beam transverse vibrations of a beam free 

vibrations and this one here where there is only w.  no w..  it is for a beam that is under some 

drag so this is beam under drag that is I have a musical instrument wire fix there and then you 

drag it in water and at that time what will be is natural frequencies that is what this equation is 

the one that we will discuss today is for the column but a column buckling that also this is the 

governing equation we are writing only governing equations here all these are governing 

equation just like the first one gave us the Eigen value problem okay. 

 

This first one gave us the Eigen value problem we can get Eigen value problems for all others 

okay this is a column buckling and here is one that is very general you know this does not we can 

get all others from this in a way at least the second order things there is a general Eigen value 

problem general Eigen value problem okay basically I can only problems are characterized by a 

differential operator so there will be some differential operator acting on a function Ø gives you 

back that function something like this is a differential operators. 

 

Differential operator differential operator okay that transforms the Ø function back to λ times all 

of them have this characteristic okay you know to understand this and then discuss in detail the 

column buckling problem not just buckling analysis but also design okay what we will do is we 

will get a little bit more understanding of the Eigen value problem. 
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And buckling at the same time by taking a simple example the example that we take is that let us 

imagine that there is a column okay and there is a compressive load P on it so this column has 

eggs modulus E second moment of area I and length l the usual things so this is young’s  

modulus and this is second moment of area and this is length if you know these three can you get 

at what load P the column B buckle buckling means that if the column is taken like this under the 

axial load at some point it will not be able to stay vertical and just we will buck like that are like 

this many other ways when we say it is an Eigen value problem. 

 

There are many buckling we can call them mode shapes okay we are mostly interested in the one 

that is fundamental buckling that is the one that I am going to draw in over in red this is a fun 

fundamental mode and they will be higher modes a second more third more and so forth there 

will be many are infinite buckling mode shapes to understand this problem this buckling problem 

let us take a simpler system let us take actually a rigid body with a let me joint here which is 

attached to some frame let us put a Tensional spring of spring constant k whose unit is going to 



be Newton meter per Radian radiant because we have been joined it can actually turn let us say it 

this thing has turned like that okay. 

 

Let us draw a reference line here and a reference line there let us call this angle from here to here 

let us call this θ okay that it is free to rotate we have indicated an angle now let us say that there 

is a force their compressive force just like what we have over here AP okay let us call the length 

of the bar l and there is spring constant torsion spring concert rotation spring constant k which is 

Newton meter per Radian as it turns there is going to be a torque generated here okay let us take 

this problem and then say what happens when we start with θ equal to zero and apply load P and 

then see what happens so we will use energy method or our principle of minimum potential 

energy. 

 

Let us apply the principle of minimum potential energy let us apply principle on a potential 

energy okay when we do that we first need to write potential energy which is strain energy plus 

what potential strain energy is there in the form of the spring that is ½ k θ
2
  okay k θ is torque 

times the angle θ averaged or this thing will be this like translational spring if it displaces by Δ 

and spring constant is K ½ k Δ
2
 is the strain energy here ½ k  θ

2 
+  work potential is negative or 

the work done by external force so here we have P which is downwards and the p when it acts 

here there will be a difference between these two points okay. 

 

That is a distance we need to take original one that is from here to here is l and here to here is 

this is l and this is θ that will become l cosine θ so this is going to be l - l cos θ okay so we write 

that as l – l cos θ in the same direction so that will be positive and it is a negative or the work 

done so we will have negative so overall what I get for potential energy is 1/2 k θ
 
-  P x l minus n 

% θ
. 
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We know that in order for equilibrium okay for equilibrium for static equilibrium we must have 

dBE / d θ is our variable here that is equal to 0 that will give us k x θ ½ k θ
2
 will give k θ  when 

you take different derivative and this one there is a minus there is a minus cos θ   derivative 

cosine θ is again-overall it will be minus force and the derivative minus will give us p l sine θ 

that is equal to 0 okay so what we get is k θ  = Pl sine θ that is our static equilibrium equation 

okay. 

 

If you look back at this problem what we have here we see that the moment balance for this will 

exactly give that if P has moved here so when it deforms the P is over there right so that moment 

is P xl  sine θ l sine θ is the distance between these two that is l sine θ okay so Pl sine θ  will be 

opposed by the torque that comes here when it is rotated there the torque you going to be k θ and 

this torque so balance we get the equilibrium equation look at this equation and this has the 

nature of an Eigen value problem. 

 



They a differential operator except that here it is not a differential operator we are taking θ 

applying doing some function getting back data times a constant okay and you can see this 

problem also has many solutions. 
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And that depends on the value of k and pl okay so if I were to plot this to show θ then k θ let me 

do this in blue color okay k θ that will be something like this okay. 
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I can do both sides if I need to write this is k θ now let us also do same green color p l sine θ this 

it is a sin θ regular sine θ over this color okay and the other side also okay now we are all they 

cross do you see this point and this point and this point we have three solutions here but were k θ 

and this other one which is this which is T L sine θ okay now we see that depending on the value 

of K number of solution changes if k kappa were to be very high and the curve were to be like 

this okay this is some k hat which is very large larger than k we have 0 is the only solution that is 

a solution of this equation. 

 

As Kappa decreases RP increases likewise so more and more solutions come right when you had 

more and more solutions whether it will be stable or unstable equilibrium will depend on the 

derivative of this again so we will write d
2
 PE/ d θ 

2 
 one more derivative will give us k minus P 

L cosine θ this quantity so what we find here is that let us say θ equal to zero is always a solution 

whether it is a stable solution or not depends on the value of this second derivative stable means 



that this thing this k- Pl cos θ that I cos θ that is zero if you have that equal to zero cosine 0 is 1 

so K - Pl should be greater than 0 okay it will be unstable equilibrium if k-  Pl is less than zero. 
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What will be the in between value or the critical point critical point where it changes from stable 

to unstable get to begin with when have very small p obviously k- Pl will be greater than zero as 

I increase p that is when it has a chance of becoming negative and hence and stable okay as a 

change there will be a critical value which will be k = Pl or T critical field critical in this case is 

k/  okay this kappa again Newton meter per Radian and meter so you get the units of Newton 

anyway radiance does not have unit. 

 

So we get the force P critical force we get that okay and of course more and more solution is 

coming that is a nature of this Eigen value problems okay but we got a critical you k/ l of this 

problem all right. 
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So what we do here for a column is a similar analysis where there are multiple solution that come 

about and a column as the one that we have we started out today so this particular column as this 

load increases the load is that much and that merge and that much at one critical value okay at 

one critical value this makes this to just buckle like that it just buckles under that load okay we 

can use calculus of variations to do what we did with minimum potential energy principle we 

will do that they are also accept that it will not be in one variable like we had this data here we 

will do that for the continuous function for the column okay. 

 

So let us take that example see if I have a column I will not show two lines I will just show this 

way there is a load on this okay if it were to buck up let us say it is fixed and free boundary 

conditions so it has moved down something like that okay we want to know how much this is 

because we need that to write potential energy we have strain energy plus work potential okay 

strain energy for that we need to know when this is going I will call it WX here we are taking X 



like this normally we take horizontal / columns we take the vertical x is equal to 0 here x is equal 

to l here okay. 

 

Length of the column so now strain energy I will write it in blue I will integrate 0 to l ½ EIW  w 

W´
2 

 dx that we know already if there is transverse displacement w (x) what is the strain energy I  

will write the work potential okay which again has in it strain energy sorry this is work potential 

that we have this is the negative of the work done by external force work done by external force 

external force in this example this problem is P the P there okay so that since it is negative I put a 

minus sign and then p times let us call this Δ . 

 

I am okay first of all I do not need to put integral I do not know yet it will integral will come p 

times Δ P times Δ negative of that is work potential so what is Δ okay this Δ is if I take a little 

segment there okay little segment and that one which was here will be dx that will be dx inclined 

what we have is dw what we want is this that if I  integrate for all segments I get this Δ okay let 

me blow it up let me draw larger one like that okay this is dx which was what was here which 

has come here okay that is dx what is this that is the incremental transverse displacement w so 

Pythagoras tells us that this one if I call that dy or something okay what we want that height right 

that is dx
2 

 - dw
2 
 okay. 

 

Let me just write √ 
2 

dx 
2 

 -dw
2 

 I can write this as 1 - W´
2 

take the dx out where W ´in our 

notation is dw/dx you know that this
2 

 √1 -W ´
2 

can be approached summated as 1 -W ´
2 

 by 2 

approximation when W ´is small which is what it is it just buckles we are not worried about post 

buckling analysis just when it buckles small displacement that what we get now what is this Δ so 

what we guarded dy is the length from here from here till here what do we get this particular 

thing that we have posed dx will also be there right so dx if integrate this I get that but I have 

subtract from L so this Δ that we want is the length the total length from here till here that a total 

length from that we are subtract this 0 to l 1 - W ´
2 

 /2 dx okay. 

 

If I do that I get l and there is this one that will also be elven integrate what minus of minus  I get 

0 to l w ´
2 

/2 dx okay with that I can write my potential energy strain energy which I have half e I 

w double ´
2 

 dx integral 0 to L now I also have the same integral minus P times Δ that also comes 



under the integral sign I get this okay dx that is a potential energy using principle of minimum 

potential energy minimize that with respect to this WX and when you write the Euler-Lagrange 

equations for it okay. 

 

So I will write Euler-Lagrange equation for it and for that this becomes our integrand f so there 

will be ∂ f / ∂ w -d / d x (∂f/ ∂ w ´+ d 
2) 

 / dx 
2 

 (∂ f /∂ w´ ´)=  0 and there will be boundary 

conditions okay. 
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That is what we have we write it for this the first one anyway that is 0 because there is no w here 

w ´is there so minus W ´is there that becomes minus of minus plus okay ∂ f/ ∂ w ´d / dx (∂ / w ´0 

will become p that is y minus of minus I already took care of that minus and this minus becomes 

plus pX w ´2 + w´
2 

 they canceled so that is what I get and then plus d
2 

 / dx 
 
 into EWI´´ that is 

what I get when I take derivative of that respectively ´ ´equal to 0 so what I got now is P W you 

p is constant I take another derivative become w´ ´plus I  get plus EI if I take E and I are constant 

they do not vary with x content area of cross section same material throughout the beam 

throughout the column I will get this to be fourth derivative equal to 0. 

 



So when I put W 
I V

  I mean d this is equal to D to the 4 w / dx to the 4 that is our notation okay 

so we have this now this is the governing equation for the column when there is a P symmetry 

had gotten for a simple bar such as this we had gotten this equation right k θ equal to P L sine θ 

and what we have here is similar okay pw ´´plus EIW4 derivative 0 right now this equation we 

can get the Rayleigh quotient for it from which we can get the buckling value and Eigen value 

problem because I can value problem if you look at it if I take w ´´okay. 

 

That is what I have taken here a differential operator is being acted on it w two derivatives you 

are taking you are getting back w ´´that is the nature of the Eigen value problem this is an Eigen 

value problem so you can write the Rayleigh quotient for it okay so for that what do we do from 

our previous lecture so we multiply w ´´with w integrate from 0 to l dx similarly we do for the 

other one EI W fourth derivative w dx that will equal to 0 all we have done is x w you x w and 

integrated that is all if it is zero here it will be 0 there okay now if you do for this one the first 

term we get the first function in macula second function first function integral a second function 

0 to l minus derivative of first function w integral second function that will become
2 

 dx okay and 

now let us do for the other one in red color. 

 

This one second term so that also first function which is w integral second function that willbe 

come triple ´ 0 to L minus integral of derivative of first function integral of second function dx 

that is equal to 0 one more time we are only do anyway boundary conditions this would go to 0 

we have a column either w´ will be 0 okay and what we are left with is 0 to L P W ´
2 

 dx and then 

likewise wr or w triple ´will be 0 here the boundary conditions that you get they will also be 

gone we are left with this here we will do integration by parts one more time we keep on doing 

until we get like a like a squire term quotient okay . 

 

So if I do this integration by parts minus again first function I will take that integral a second 

function 0 to L minus of minus plus 0 to L derivative of first function integral a second function 

that gives us square dx equal to 0 and once again this also boundary conditions will make it good 

zero. 
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 Now we get the P from the above we can write this as 0 to l EL w ´ ´
2 

dx divided by 0 to l w ´
2 

 

dx this is a Rayleigh quotient for column buckling so Rayleigh quotient has both numerator and 

denominator positive so it always positive so buckling load is passed you cannot be negative it is 

compressive already we have taken then it is just positive real a coefficient for column buckling 

okay why is this important as we said if you take any W here this becomes the buckling load. 

 

And this is buckling mode shape we noted one minimum characterization theorem pertaining to 

Eigen  value problems in the corner Rayleigh quotient Rayleigh quotient has this amazing 

property that it becomes a minimum whenever w becomes a buckling mode shape you can take 

any function okay let us say let us just imagine a you know w axis okay when I say W access 

that these are functions you know if I take different points will have different functions they are 

all functions you see if you take that wherever it the Rayleigh quotient for column buckling or 

any problem when ever this becomes a buckling mode shape or a mode shape then Rayleigh 

quotient will have minimum there okay. 



 

Let us say another one over here will have minimum again there another one over there will have 

minimum again there so everything is a minimum so all these points Rayleigh quotient locally 

becomes minimum that was a minimum characterization theorem that we had another thing 

because the minimum is that if I take aw w hat then I write this Rayleigh quotient for this p hat 

okay by evaluating E I w hat´ ´
2 

 dx divided by 0 to l w hat´
2 

 dx you get a p-hat value this P hat 

you will find is larger than this P critical that we have the real buckling load in other words 

whatever value you take you will get a value that is larger than critical load if you minimize 

Rayleigh quotient okay. 

 

The earlier question that we have there or in this particular problem it is P critical if you 

minimize this Rayleigh quotient for buckling you get the buckling about using this what we do is 

we will solve a problem. 
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Where we want to maximize the P critical that will be the strongest column we want to 

maximum P critical by varying let us say area of cross section of a column okay this will give us 

the strongest column if I strongest meaning it is not going to bucko buckling has this phrase that 



we buckle under pressure right that is you are becoming unstable so here when you say strongest 

column that will have maximum P critical that is what we will discuss in the next part of the talk 

thank you. 

 

 


